

o ImmunityBio

ImmunityBio is honored to support efforts in **HIV cure research**

In 2023, nearly 40 million people globally were living with HIV*

*Source: https://www.unaids.org/en/resources/fact-sheet

https://immunitybio.com/hiv/

Learn more about our HIV studies

CONTENTS

COMMITTEES4
WELCOME ADDRESS5
PROGRAM AT A GLANCE6
SCIENTIFIC PROGRAM7
POSTER PRESENTATIONS
GENERAL INFORMATION39
PARTNERS

COMMITTEES

STEERING COMMITTEE

Ann Chahroudi, Atlanta - USA Mary Kearney, Frederick - USA Alain Lafeuillade, Toulon - FRA David Margolis, Chapel Hill - USA Karl Salzwedel, Bethesda - USA Mario Stevenson, Miami - USA

SCIENTIFIC COMMITTEE

Nancie Archin, Chapel Hill — USA
Katharine Bar, Philadelphia — USA
Paula Cannon, Los Angeles — USA
Marina Caskey, New York — USA
Victor Garcia-Martinez, Chapel Hill — USA
Nicolas Chomont, Montreal — CAN
Janice Clements, Baltimore — USA
Michael Farzan, San Diego — USA
Bradley Jones, New York — USA
Romas Geleziunas, Foster City — USA

Jonathan Karn, Cleveland — USA Sharon Lewin, Melbourne — AUS Arabica Lichterfold, Basser — USA

Bonnie Howell, Kenilworth - USA

Ya-Chi Ho, New Haven - USA

Mathias Lichterfeld, Boston - USA | Linos Vandekerckhove, Ghent - BEL

Javier Martinez-Picado, Barcelona — ESP Michaela Muller-Trutwin, Paris — FRA Thumbi Ndung'u, Durban — ZAF Monique Nijhuis, Utrecht — NLD Una O'Doherty, Pennsylvania — USA Afam Okoye, Beaverton — USA Sarah Palmer, Sydney — AUS Deborah Persaud, Baltimore — USA Vicente Planelles, Salt Lake City — USA Maria Salgado, Barcelona — ESP Asier Sáez-Cirión, Paris — FRA Sereti Irini, Maryland — USA Susana Valente, Jupiter — USA Carine Van Lint, Brussels — BEL

WELCOME ADDRESS

Dear Friends and Colleagues,

We are pleased to welcome you to the 11th International Workshop on HIV Persistence during Therapy, taking place in Fort Lauderdale, FL, from December 10-13, 2024.

This year, we are especially thrilled to announce that the quality of abstract submissions has reached new heights, reflecting both the depth of expertise and the diversity of perspectives in the field. This diversity not only enriches our discussions but also strengthens our collective efforts to tackle the complex challenges of HIV reservoirs and eradication strategies.

We are also pleased to welcome two colleagues, Drs Ann Chahroudi and Mary Kearny who have been a part of our community for many years, to the Steering Committee. Their invaluable expertise and dedication exemplify the inclusive and collaborative spirit that defines our workshop.

Since our first meeting in 2003, this workshop has become the definitive forum for presenting and discussing cutting-edge, unpublished research on HIV persistence. The 2024 program promises to uphold this legacy, featuring rigorous scientific presentations, expert panel discussions, and a dynamic environment for collaboration.

We understand and respect the concerns about returning to Florida, particularly in light of issues affecting LGBTQIA+, Black, and reproductive rights' communities. However, Fort Lauderdale's welcoming and inclusive atmosphere, underscored by its vibrant history of advocacy and diversity, remains a fitting backdrop for this important meeting. The city's ongoing commitment to HIV awareness, exemplified by institutions like the Stonewall National Museum & Archives and the World AIDS Museum, aligns closely with our mission.

Thank you for being part of this unique gathering. Your participation is vital to advancing our shared goals, and we look forward to another inspiring and impactful workshop.

The Steering Committee,

Ann Chahroudi, Mary Kearney, Alain Lafeuillade, David Margolis, Karl Salzwedel, Mario Stevenson

PROGRAM AT A GLANCE

	TUESDAY DECEMBER 10	WEDNESDAY DECEMBER 11	THURSDAY DECEMBER 12	FRIDAY DECEMBER 13
08:00 AM 10:00 AM		SESSION 1: Basic Science of HIV Latency	SESSION 4: Immunology of HIV Persistence	SESSION 7: Human Studies
		COFFEE BREAK	COFFEE BREAK	COFFEE BREAK
10:30 AM 12:30 PM		SESSION 2: Virology of HIV Persistence	SESSION 5: In vitro & Animal Model Studies of HIV Persistence	SESSION 8: Antibody & Immune based therapies
12:30 PM 02:00 PM	01:00PM-03:00PM Satellite Session Translating Science	LUNCH	LUNCH	12:30PM - 01:00PM CLOSING REMARKS
02:00 PM 04:00 PM	03:30PM-05:00PM Satellite Session NIMH Funded Studies	SESSION 3: Drug Discovery Development & Pharmacology	SESSION 6: Cell & Gene Therapies	
04:00 PM 05:00 PM		Highlighted Short Talks I	Highlighted Short Talks II	
05:00 PM 06:30 PM		Doctor Cossian I	Doctor Cossian II	
06:30 PM 07:30 PM	OPENING LECTURE	Poster Session I	Poster Session II	
07:30 PM 10:30 PM	WELCOME DINNER			

SCIENTIFIC PROGRAM

TUESDAY, DECEMBER 10, 2024

03:30PM

05:30PM

03:30PM

03:35PM

03:35PM

03:55PM

03:55PM

04:10PM

04:10PM

04:25PM

04:25PM

04:40 P M

04:40 P M

04:55PM

04:55PM

05:10PM

05:10PM

05:30PM

Intracostal Ballroom

01:00PM Satellite Workshop - Translating Science: A Training Workshop to Support Communicating Cure Science

This is geared toward early stage investigators, community pa

This is geared toward early stage investigators, community partners, and anyone interested in growing their ability to share research across different stakeholders. The workshop will provide tools and templates for sharing research with lay audiences and

Jessica Salzwedel, New York - USA Marc Franke (The Düsseldorf Patient), Velen - GER

Marc Franke (The Dusseldort Patient), Velen - GER

Eliseo Eugenin, University of Texas, Galveston, TX, USA

Guochun liang, University of North Carolina, Chapel Hill, NC, USA

Grant Campbell, University of South Dakota, Vermillion, SD, USA

Jin Wang, Methodist Hospital Research Institute, Houston, TX, USA

Michal Toborek, University of Miami School of Medicine, Miami, FL

Intracostal Ballroom

Satellite Workshop - Research outcomes from NIMH funded Studies Leveraging Host Cellular Pathways for Targeting HIV CNS/Myeloid Reservoirs

Co-Chairs: Kiera Clayton, University of Massachusetts, Worcester, MA, USA

Mario Stevenson, University of Miami, Miami, FL, USA

utilize interactive training methods to improve communication and engagement skills.

Welcome Remarks and Meeting Goals **Jeymohan Joseph, NIMH,** Rockville, MD, USA

Metabolic strategies to eliminate CNS Myeloid Viral Reservoirs

Modulation of HIV reservoir dynamics in brain pericytes

Strategies for Depletion of HIV reservoir by activation of ISR Signaling

Targeting HIV Myeloid Reservoirs in the CNS by IAP and TREM1 Inhibition

Targeting the HIV-1 Reservoir in Myeloid Cells using the SECH approach

Repurposing BCL-2 and Jak 1/2 inhibitors for targeting myeloid reservoirs

Boghuma Kabisen Titanji, Emory University, Atlanta, GA, USA

Research Gaps and Future Research Areas Discussion

Kiera Clayton, University of Massachusetts, Worcester, MA, USA

Mario Stevenson, University of Miami, Miami, FL, USA

7

TUESDAY, DECEMBER 10, 2024

Intracostal Ballroom

06:30PM

OPENING SESSION

07:30PM

Welcoming remarks by the Steering Committee

Ann Chahroudi - Emory University, Atlanta, Georgia, United States

Mary Kearny - HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD, USA David Margolis - University of North Carolina at Chapel Hill, USA

Karl Salzwedel - NIAID, Bethesda, USA

Mario Stevenson - University of Miami Leonard M. Miller School of Medicine, Miami, USA

06:40PM

Overall cure landscape from the NIH perspective

07:05PM

Carl Dieffenbach, National Institute of Allergy and Infectious Diseases, Aids Division, Bethesda, USA

07:05PM

Community Voice: Living on ART and Why a Cure is Necessary

07:30PM

Antoinette Jones, Dandelion, INC., Atlanta, USA

07:30PM WELCOME DINNER IN THE GRAND BALLROOM

WEDNESDAY, DECEMBER 11, 2024

Intracostal Ballroom

MA00:80

Session 1: Basic Science of HIV Persistence

10:00AM

Chairperson: Una O'Doherty - Emory University School of Medicine, Atlanta, USA

1.0 Proviral gene expression and quantitation of the latent HIV-1 reservoir

Tokameh Mahmoudi, Erasmus University Medical Center, Departments of Pathology, Urology, Biochemistry, Rotterdam, NED

Oral Presentations:

1.1 - 00003 Longitudinal analysis in early treated individuals reveals alteration in the HIV-1 integration site landscape and composition of the inducible reservoir

T. Struyve¹, M. Pardons¹, J. De Clercq¹, L. Termote¹, L. Lambrechts¹, Y. Noppe¹, M. Lichterfeld², S. Rutsaert¹, L. Vandekerckhove¹

¹HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University - Ghent, Belgium; ²Infectious Disease Division, Brigham and Women's Hospital, Ragon Institute of MGH, MIT and Harvard, Boston, United States

1.2 – 00055 Blood and tissue HIV-1 reservoirs display cellular plasticity and lack of compartmentalization in virally suppressed people

M. Pardons¹, L. Lambrechts¹, Y. Noppe¹, L. Termote¹, S. De Braekeleer¹, J. Vega², E. Van Gulck³, S. Gerlo¹, L. Vandekerckhove¹

¹Hiv Cure Research Center - Ghent, Belgium; ²Arcturus Therapeutics, San Diego, United States;

³Janssen Pharmaceutica Nv - Beerse, Belgium

1.3 – 00084 Persistence of HIV genomes in bacteria-specific CD4+ T cells during ART

<u>A. Espinosa Ortiz</u>^{1, 2}, R. Fromentin^{1, 2}, S. G. Deeks³, J.P. Routy⁴, N. Chomont^{1, 2}

¹Département De Microbiologie, Infectiologie Et Immunologie, Faculté De Médecine, Université De Montréal - Montréal, Canada; ²Centre De Recherche Du Chum - Montréal; ³Department of Medicine, University of California, San Francisco, California, United States; ⁴Division of Hematology & Chronic Viral Illness Service, McGill University Health Centre - Montréal, Canada

1.4 - 00111 Identification of the cellular transcription factor KLF16 (Krüppel-like factor 16) as a new HIV-1 silencing factor

M. Santangelo¹, M. Bendoumou¹, A. Dutilleul¹, L. Nestola¹, M. Dieu²,

P. Renard², C. Van Lint¹

¹University of Brussels (ULB), Service of Molecular Virology - Brussels, Belgium; ²Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur - Namur, Belgium

1.5 - 00118 Intact Proviruses Persist in Expressed Genes in People with HIV-1 on Long-term ART S. Patro¹, J. Gluck², E. Halvas³, K. Joseph³, N. Mckenna³, S. Guo¹, S. Parvez², J. Rausch², X. Wu¹, J. Mellors³, S. Hughes², M. Kearney²

¹Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research - Frederick, MD, United States; ²National Cancer Institute - Frederick, MD, United States; ³University of Pittsburgh -Pittsburgh, PA, United States

1.6 - 00161 HIV-1 Antisense Transcripts are frequent in FOXP3-negative Treglike cells expressing markers of persistence in vivo during acute HIV- 1 infection

M. Hale¹,², G. Kundu¹,², A. Geretz¹,², P. Ehrenberg¹, R. Clifford¹,², M. Robb¹,², C. Sacdalan³,⁴, S. Sriplienchan³, ⁴, N. Phanuphak⁵, S. Vasan¹, ², R. Thomas¹, RV254 study team

¹US Military HIV Research Program, Walter Reed Army Institute of Research - Silver Spring, MD, United States; ²Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. - Bethesda, MD, United States; ³SEARCH Research Foundation - Bangkok, Thailand; ⁴Research Affairs, Faculty of Medicine, Chulalongkorn University - Bangkok, Thailand; 5 Institute of HIV Research and Innovation -Bangkok, Thailand

10:00AM - 10:30AM COFFEE BREAK

10:30AM 12:30PM

Session 2: Virology of HIV Persistence

Chairperson: Monique Nijhuis - University Medical Center Utrecht, NED

2.0 Persistence of clonally expanded proviruses

Joel Blankson, Johns Hopkins University School of Medicine, Baltimore, USA

Oral Presentations:

2.1 - 00040 Lenacapavir impairs gag proteins expression by HIV-infected cells

C. Faua¹, S. Bernacchi², A. Ursenbach³, M. Negroni², P. Gantner¹, ⁴

¹INSERM UMR_S1109, Strasbourg University, Strasbourg, France; ²Architecture et Réactivité de l'ARN-UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France; ³Le Trait d'Union, HIV-Infection Care Center, Strasbourg University Hospital, Strasbourg, France; 4Clinical Virology Laboratory, Strasbourg University Hospital, Strasbourg, France

2.2 – 00058 Role of HIV integration site on clonal expansion of infected cells and maintenance of latency in vivo

<u>V. Pal</u>¹,*, M. Frauke², A. Danesh³, M. Canis¹, T. Dilling³, I. Miller³, T. Huynh³, T. Hatziioannou¹, R.B. Jones³, G.Q. Lee³, P.D. Bieniasz¹,⁴

¹The Rockefeller University - New York, United States; ²Heidelberg University - Heidelberg, Germany; ³Weill Cornell Medical College - New York, United States; ⁴Howard Hughes Medical Institute, The Rockefeller University, New York, United States

2.3 - 00078 Detection of HIV-1 antisense transcripts in donor samples before and during ART

<u>A. Capoferri</u>¹, T.O. Famuyiwa¹, R. Sklutuis¹, S. Pathak¹, J.L. Groebner¹, R. Li², J.W. Rausch¹, S.G. Deeks³, J.W. Mellors⁴, J.M. Coffin⁵, F. Romerio², M.F. Kearney¹

¹HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD, United States; ²Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; ³Department of Medicine, University of California, San Francisco, CA, United States; ⁴Department of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA, United States; ⁵Department of Molecular Biology and Microbiology, Tufts University, Boston, MA. United States

2.4 - 00143 Selective export of HIV mRNAs is regulated by compartmentalized interactions with Sam68, PTB and m6A RNA methylation in reactivated latently infected T-cells

<u>F. Kizito</u>¹, E. Honeycutt¹, F. Ye¹, T. Sweet², A. Agaponova¹, J. Karn¹

¹Department of Molecular Biology and Microbiology; ²Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA

2.5-00074 Propagation of HIV reservoir clones reveals functional heterogeneity, suggesting diverse mechanisms of persistence

<u>I. Ferreira</u>¹, *, A. Herrera¹, T.T. Huynh¹, E. Stone¹, N. Linden¹, C. Bittar Oliva², M. Caskey², M. Nussenzweig², R.B. Jones¹

¹Division of Infectious Diseases, Weill Cornell Medicine, New York, USA; ²Laboratory of Molecular Immunology, The Rockefeller University, New York, USA

2.6 – 00158 Doubling dolutegravir dosage reduces the viral reservoir in ART- treated people with HIV

A. Pasternak¹,*, C. Fombellida-Lopez², A. Cicilionytė¹, L. Winchester³, M. Maes⁴, P. Dellot⁵, C. Vanwinge⁶, A. Ladang⁷, E. Cavalier⁷, F. Susin⁸, D. Vaira⁸, M.P. Hayette⁸, C. Reenaers⁹, M. Moutschen², C. Fletcher³, G. Darcis²

¹Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam Umc - Amsterdam, Netherlands; ²Laboratory of Immunology and Infectious Diseases, Giga-Institute, University of Liège - Liège, Belgium; ³Antiviral Pharmacology Laboratory, University of Nebraska Medical Center - Omaha, United States; ⁴Department of Biostatistics and Medico-Economic Information, University Hospital of Liège - Liège, Belgium; ⁵Department of General Internal Medicine and Infectious Diseases, University Hospital of Liège - Liège, Belgium; ⁶Giga Flow Cytometry Platform, University of Liège - Liège, Belgium; ⁸Laboratory of Clinical Microbiology, University Hospital of Liège - Liège, Belgium; ⁹Department of Gastroenterology, University Hospital of Liège - Liège, Belgium

02:00PM 04:00PM Session 3: Drug Discovery & Development, Pharmacology, Novel approaches

Chairperson: Devi SenGupta - Gilead, Foster City, USA

3.0 Targeted Activator of Cell Kill (TACK)

Bonnie Howell, Merck, West Point, USA

Oral Presentations:

3.1 - 00145 Exploring novel HIV Tat inhibitors

S.M. Jablonski¹, J.A. Jablonski¹, L. Shuang¹, L. Ling², A. T. McAuley¹, R. Ronald, Jr.³, P. Espinoza-Gonzales¹, B. MacTavish¹, Q. Gibault¹, S. Zhang⁴, T. Bannister³, S. M. Schader⁵, R. Ptak⁴, V. Garcia², C. Augelli-Szafran⁴, S. T. Valente¹

¹Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA; ²Department of Microbiology, The University of Alabama, Birmingham, Alabama, USA; ³Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, 2A1, Jupiter, Florida, USA; ⁴Drug Discovery Division, Chemistry Department, Southern Research, Birmingham, Alabama, USA; ⁵ViiV Healthcare, 410 Blackwell Street, Durham, NC 27701, USA.

3.2 – 00080 New PKC Modulator Latency Reversing Agents for depleting persistent HIV reservoirs

J. Moran¹, T. Chou¹, Z.O. Gentry², O.D. Mcateer², J.L. Hamad², J.T. Kim³, P. A. Wender², J.A. Zack³, <u>M.D. Marsden¹</u>, ¹University of California - Irvine, United States; ²Stanford University - Stanford, United States; ³University of California - Los Angeles, United States

3.3 – 00093 RasGRP1 agonists induce cyclin T1 translation to reverse HIV-1 latency in primary CD4+ T cells

<u>U. Mbonye</u>¹, A. Bellomo², ³, E. Elhalem², ³, L. Gandolfi Donadio², ³, M. Julieta Comin², ³, J. Karn¹
¹Department of Molecular Biology & Microbiology, Case Western Reserve University School of Medicine
- Cleveland, United States; ²Department of Active Ingredients and Biorefineries, National Institute of Industrial Technology - Buernos Aires, Argentina; ³National Scientific and Technical Research Council, Argentina

3.4 – 00150 Unbiased Genome-Wide CRISPR Screens in Primary Human CD4+ T Cells Identify Novel Proviral and Anti-viral HIV Host Factors

U. Rathore¹, E. Dugan¹, N.J. Krogan¹, A. Marson¹

¹Gladstone Institutes, University of California, San Francisco - San Francisco, United States

3.5 – 00053 Monovalent SMAC mimetics enhance proliferation of HIV-specific CD8 T cells <u>K. Tanaka</u>¹, Y. Kim¹, H. King¹, M. Roche¹, S.R. Lewin¹, ², ³

¹Department of Infectious Diseases, The University of Melbourne At The Peter Doherty Institute For Infection and Immunity - Melbourne, Australia; ²The Alfred Hospital and Monash University ³The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity

3.6 – 00159 Clinical and virologic outcomes of an art interruption in treated controllers and non-controllers

M. Peluso¹, A. Deitchman¹, I. Avila-Vargas¹, A. Rodriguez¹, T. Figueroa¹, T. Dalhuisen¹, M. Williams¹, R. Hoh¹, R. Rutishauser¹, S. Deeks¹, L. Cohn²

¹UCSF - San Francisco, United States; ²Fred Hutch Cancer Center - Seattle, United States

04:00PM 05:00PM

Highlighed Short talks of interest I

Chairpersons: David Margolis - University of North Carolina at Chapel Hill, USA; Mario Stevenson - University of Miami Leonard M. Miller School of Medicine, Miami, USA

ST1.0 Block and Lock strategy for HIV cure

Susana Valente, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, USA

Oral Presentations:

ST1.1 – 00095 Single cell transcriptomic characterization of the gastrointestinal HIV reservoir

E. Browne¹, J. Peterson¹, E. Bennett¹, C. White², S. Chandel¹, K. James¹, B. Allard¹, M. Clohosey¹, T. Whitaker¹, C. Baker¹, S. Pedersen¹, A. Peery¹, C. Gay¹, D. Margolis¹, N. Archin¹

¹Unc Chapel Hill - Chapel Hill (United States); ²Merck - Cambridge (United States)

ST1.2 - 00105 Characterization of the molecular mechanisms involved in the CD8+ T cell-mediated non-cytolytic silencing of HIV-1 transcription

M. Bendoumou¹, <u>A. Dutilleul</u>¹, L. Nestola¹, M. Paiardini², D. Kulpa², G. Silvestri², C. Van Lint¹
¹Université Libre de Bruxelles (ULB), Service of Molecular Virology, Brussels, Belgium; ²Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, IISA

ST1.3 – 00171 Venetoclax decreases intact proviral DNA frequency in SIV-infected, ART-suppressed Rhesus Macaques

S. N. Bergstresser¹, T. Wiches-Salinas¹, D. Carnathan¹, H. Wang¹, Y. Abraham¹, G. Pavlakas³, B. Felber⁴, M. Roeder⁵, C. Fennessey⁵, B. Keele⁶, M. Paiardini¹, ², D. A. Kulpa¹, ², G. Silvestri¹, ²

¹Emory University, National Primate Research Center, Atlanta, GA, United States of America; ²Emory University, School of Medicine, Department of Pathology and Laboratory Medicine, Atlanta, GA, United States of America; ³Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States of America; ⁴Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States of America; ⁵Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; ⁶AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD, United States of America

ST1.4 - 00008 Persistent HIV-1 unintegrated linear DNA can integrate and lead to viral replication after integrase inhibitor treatment removal

M. Maisch¹, S. Figueiredo¹, B. Charmeteau-De Muylder², H. Roux³, A. Couëdel-Courteille², R. Cheynier², J. Dutrieux¹

¹Université Paris Cité, Cnrs, Inserm, Institut Cochin, The Dynavir Network, GdrCnrs 210 - Paris (France); ²Université Paris Cité, Cnrs, Inserm, Institut Cochin - Paris (France); ³Département De Microbiologie, Infectiologie Et Immunologie, Université De Montréal, Centre De Recherche Du Chum - Montréal (Canada)

08:00AM 10:00PM Session 4: Immunology of HIV Persistence

Chairperson: Michaela Muller-Trutwin - Institut Pasteur, Paris, FRA

4.0 Understanding the landscape of lymph node HIV reservoirs during ART through single cell analysis

Michael Betts, University of Pennsylvania, Philadelphia, USA

Oral Presentations:

4.1 – 00057 Tissue resident memory programs of intestinal CD4+ and CD8+ T cells facilitate HIV-1 persistence

Y. Wei¹,*, H.K. Ma¹, M.E. Wong¹, L. Konnikova², P. Tebas³, R. Morgenstern⁴, E. Papasavvas⁵, L.J. Montaner⁵, Y.C. Ho¹

¹Department of Microbial Pathogenesis, Yale University School of Medicine - New Haven, United States; ²Department of Pediatrics and Obstetrics, Yale University School of Medicine - New Haven, United States; ³Presbyterian Hospital-University of Pennsylvania Hospital - Philadelphia, United States; ⁴Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine - Philadelphia, United States; ⁵Wistar Institute - Philadelphia, United States

4.2 – 00027 Secondary cytotoxicity of memory CD8+ T cells targeting autologous HIV during treated chronic infection is associated with suppression of provirus and of recrudescent viremia

D. R. Collins¹, *, M. J. Olatotse¹, E. Mazzola², M. Sagar³, B. D. Walker¹, A. Tsibris⁴

¹Ragon Institute of Mass General, MIT and Harvard – Cambridge, United States; ²Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute – Boston, United States; ³Departments of Medicine and Virology, Boston University Chobanian & Avedisian School of Medicine – Boston, United States; ⁴Division of Infectious Diseases, Brigham and Women's Hospital – Boston, United States

4.3 - 00124 HIV infection induces T cell quiescence, leading to proviral latency

L. M. Plasek¹, L. S. Gunawardane¹, F. Niazi¹, U. Mbonye¹, K. Leskov¹, G. Perez², C. Dobrowolski³, M. Shukla¹, W. S. Nutt⁴, J. Karn¹, <u>S. Valadkhan</u>¹

¹Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; ²Section of Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA; ³Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA;

⁴Molecular & Cellular Biology Program, University of Washington, Seattle, Washington, USA

4.4 – 00091 Molecular Drivers of HIV-Induced Immune Modulation and CD8+ T Cell Dysfunction in Lymph Node Follicles during ART-Suppressed Subtype C Infection

Z. Ndhlovu¹, ³, ⁴, ^{*}, A. Papadopoulos¹, T. Khaba¹, T. Ngubane², ¹Africa Health Research Institute - Durban, South Africa; ²Hiv Pathogensis Programme, University of Kwazulu Natal - Durban, South Africa; ³Ragon Institute of MGH, MIT and Harvard, Cambridge, USA; ⁴University of KwaZulu Natal, Durban, South Africa

4.5 – 00020 Control of HIV infection is associated with enhanced CD8T cell functionality during consecutive analytical treatment interruptions

<u>G. Duette¹, ², *, J. Marin-Rojas¹, S. Cronin¹, ², S. G. Deeks³, A. D. Kelleher⁴, S. Palmer¹, ²</u>

¹The Westmead Institute for Medical Research, Centre for Virus Research, Westmead, Australia; ²The University of Sydney, Faculty of Medicine and Health, Sydney, Australia; ³University of California, San Francisco, Department of Medicine, San Francisco, United States; ⁴The Kirby Institute, University of New South Wales, Sydney, Australia

4.6 - 00114 Transcriptomic profile of gut T follicular helper cells during persistent HIV infection

F. Cossarini¹,², A. Krek³, D. D'souza²,⁴, Z. Chen²,⁴, S. Kim-Schulze²,⁴, B. K. Chen¹,², F. Petralia³, S. Mehandru².5

¹Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States; ²Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, United States; ³Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States; ⁴Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, United States; 5 Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States

📇 10:00AM - 10:30AM COFFEE BREAK 造

10:30AM 12:30 PM

Session 5: In Vitro and Animal Model Studies of HIV Persistence

Chairperson: J. Victor Garcia-Martinez - The University of Alabama at Birmingham, Birmingham, USA

5.0 Targeting Anti-apoptotic Molecules to Eliminate the SIV Reservoir

Mirko Paiardini, Emory University - Atlanta, USA

Oral Presentations:

5.1 - 00136 Plasma SIVmac239M clonotypes in rebound viremia correspond to those induced by AZD5582 during ART

V.V.C. Edara¹, B. Ukhueduan¹, L. Lampros¹, C. M. Fennessey², J. D. Lifson², B. F. Keele², A. Chahroudi¹, 3, 4

¹Department of Pediatrics, Emory School of Medicine, Atlanta, GA, USA; ²AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA; ³Emory National Primate Research Center, Emory University, Atlanta, GA, USA; 4Center for Childhood Infections and Vaccines, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA

5.2 - 00120 Well-seeded reservoirs in gut are associated with tertiary lymphoid organs and stress response activation

<u>R. Lorenzo-Redondo</u>^{1,5}, M. Arif², C.T. Thuruthiyil², S.S. Pascoe², M.A. Shaaban¹, Y.S.G. Thomas², J.M. Hasson¹, S. Samer², M.R. Haque², F.A. Engelmann², I. Clerc³, M.D. Mcraven², M. Arainga⁴, E. Martinelli³, F.J. Villinger⁴, T.J. Hope²

¹Northwestern University, Feinberg School of Medicine, Department of Medicine (infectious Diseases)

- Chicago, United States; ²Department of Cell and Developmental Biology, Northwestern University -Chicago, United States; 3 Northwestern University Feinberg School of Medicine, Department of Medicine (infectious Diseases) - Chicago, United States; ⁴University of Louisiana At Lafayette, New Iberia Research Center - New Iberia, United States; ⁵Center for Pathogen Genomics and Microbial Evolution, Northwestern University Robert J. Havey, MD Institute for Global Health, Chicago, United States

5.3 - 00106 Macrophage-tropic TF SHIV D infected NHP model of reservoir persistence, decay and pathogenesis on suppressive anti-retroviral therapy

S. Mallick¹, R. Krause¹, A. G. Mcfarland¹, H. Schrader¹, G. D. Whitehill¹, F. E. Marino¹, R. Podgorski², E. Lewis¹, G. M. Shaw¹, T. Burdo², ³, Katharine J. Bar¹

¹Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; ²Temple University, Philadelphia, PA, USA; ³Rutgers Institute for Translational Medicine and Science, New Brunswick, NI, USA

5.4 – 00148 Targeting Wnt/ β -catenin signaling pathway during latency reversal in ART-suppressed SIV-infected rhesus macaques

R. A. Hamid¹, S. Z. Pour*, I. Ruiz-Salinas¹, N. Schoof¹, A. Colvin¹, J. Lifson², B. Keele², G. Silvestri¹, A. Chahroudi¹, M. Mavigner¹,

¹Emory University, Atlanta, Georgia, United States; ²Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States

5.5 - 00117 HIV-Tocky system in primary CD4+T cells joined with transcriptomic and epigenomic analysis to discover mechanism involves in the establishment of latency during acute infection

<u>W. Sakhor</u>¹, K. Sugata¹, B. T. J. Yang¹, K. Niimura¹, K. Monde², C. Motozono¹, R. Kariya¹, O. Reda¹, ³, A. Rahman¹, S. N. Sithi¹, H. Nakamura⁴, S. Okada¹, T. Ueno¹, Y. Sagara⁴, H. Takeuchi⁵, M. Ono⁶, K. Maeda⁷, Y. Satou¹

¹Joint Research Center for Human Retrovirus Infection, Kumamoto University, Japan; ²Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Japan; ³Microbiology Department, High Institute of Public Health, Alexandria University, Egypt; ⁴Department of Quality, Japanese Red Cross Kyushu Block Blood Center, Chikushino, Japan; ⁵Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan; ⁶Department of Life Sciences, Imperial College London, United Kingdom; ⁷Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Japan

5.6 – 00133 Suppression of viral rebound by a Rev-dependent lentiviral particle in SIV-infected rhesus macaques

B. Hetrick¹, S. Siddiqui², M. Spear¹, J. Guo¹, H. Liang¹, Y. Fu¹, Z. Yang¹, L. Doyle-Meyers², B. Pahar², ³, R.S. Veazey², J. Dufour², A. Andalibi¹, B. Ling², ⁴, <u>Y. Wu</u>¹

¹Center for Infectious Disease Research, George Mason University, Manassas, VA, USA; ²Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA; ³Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, USA; ⁴Host-Pathogen Interaction Program, Texas Biomedical Research Institute, 8715 W Military Dr., San Antonio, TX, USA

12:30PM - 02:00PM LUNCH

02:00PM 04:00PM

Session 6: Cell & Gene Therapies

Chairperson: Priti Kumar - Yale School of Medicine, New Haven, USA

6.0 Cell and gene therapy for sickle cell disease, insights into HIV gene therapy

John Tisdale - NHLBI, Bethesda, USA

Oral Presentations:

6.1 – 00142 Durable Viral Load Remission in SHIV-infected Macaques after Vectored Delivery of Monoclonal Antibodies

J. M. Martinez-Navio¹, S. P. Fuchs¹, P. G. Mondragon¹, R. Zabizhin¹, D. E. Mendes¹, C. P. R. Muniz¹, K. Weisgrau², J. Furlott², E. Alexander², E. G. Rakasz², G. Gao³, J. D. Lifson⁴, R. C. Desrosiers¹

¹Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, USA; ²Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA; ³Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA;

⁴AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA

6.2 – 00049 Multivalent CAR T Cell Therapy Shows Superior Potency in Controlling HIV Escape and Replication in BLT Humanized Mice

<u>F. Severi</u>¹, ², D. Bercow¹, K. Stallings¹, ³, A. Criswell¹, ⁴, F. Pennino¹, R. Acosta¹, ³, T. Yang¹, D. Claiborne¹

¹The Wistar Institute, Philadelphia, PA, United States; ²University of Bologna, Bologna, Italy;

³University of Pennsylvania, Philadelphia, PA, United States; ⁴Drexel University, Philadelphia, PA, United States

6.3 – 00019 AAV Delivery of the CCR5-blocking monoclonal antibody Leronlimab yields long-term expression and ART-free remission from SHIV viremia

<u>H. L. Wu</u>¹,*, G. M. Webb¹, J. Zikos², D.M. Magnani², S. P. Fuchs³, R. C. Desrosiers³, J. B. Sacha¹ ¹Oregon National Primate Research Center, Oregon Health & Science University - Beaverton, United States; ²Nonhuman Primate Reagent Resource, University of Massachusetts Chan Medical School - Boston, United States; ³Miller School of Medicine, University of Miami - Miami, United States

6.4 – 00112 Overcoming immune responses directed toward AAV-delivered bNAbs

M. Kuipa¹, P. Koroma¹, I. Leguizamo¹, P. Dhole¹, M.R. Gardner¹, A.

¹Division of Microbiology and Immunology, Emory National Primate Research Center, Atlanta, GA; ²Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta. GA

6.5 – 00173 A single-infusion of CCR5 modified stem-like CD4 T cells to limit HIV/SIV persistence during ART and promote control of viremia upon ATI

A. A. Sharma¹, J. Zeidan¹, M. Islam¹, J. Harper², A. B. Enriquez¹, G. Lee³, K. Nguyen², J. Auger², H. Flores², R. Fromentin⁴, S. G. P. Sanchez⁶, J. L. C. De Azeved¹, F. A. Procopio⁷, R. Balderas⁸, J. P. Lalezari⁹, N. Chomont⁴, S. D. Ando³, A. Wilkes², R. Stammen², M. Paiardini¹, S. G. Deeks¹⁰, R.P. Sekaly¹

¹Emory University, Atlanta, GA, USA; ²Emory National Primate Research Center, Emory University, Atlanta, GA, USA; ³Sangamo Therapeutics, Richmond, CA, USA; ⁴Université de Montréal, Faculty of Medicine, Department of Microbiology, Infectiology, and Immunology, Montréal, Québec, Canada; ⁵Université de Montréal, Centre de Recherche du CHUM, Montréal, Québec, Canada; ⁶University of California, Irvine, CA, USA; ⁷Lausanne University Hospital (CHUV), Lausanne, Switzerland; ⁸BD Biosciences, San Jose, CA, USA; ⁹Quest Clinical Research, San Francisco, CA, USA; ¹⁰University of California, San Francisco and San Francisco General Hospital, San Francisco, CA, US

6.6 – 00176CAR/CCR9 T cell immunotherapy shows promise in localization of SIV-specific CAR T cells to the gastrointestinal tract of rhesus macaques

<u>P. Skinner</u>¹, Z. Quinn¹, I. Gorrell-Brown¹, M. Rollins², L. Thron¹, A. Acharya³, E. Sempek³, D. Dawn⁴, M. Reynolds⁴, S. Byrareddy³, L. Ndhlovu⁵, V. Vezys², M. Pampusch¹

¹Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States; ²Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States; ³Department of Pharmacology, University of Nebraska Medical Center, Omaha, NE, United States; ⁴Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, United States; ⁵Immunology in Medicine, Weill Cornell Medicine, New York, NY, United States

04:00PM 05:00PM

Highlighed Short talks of interest II

Chairpersons: Ann Chahroudi, Emory University, Atlanta, Georgia, United States; Mary Kearny, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD, USA

ST2.0 Distinct features of HIV persistence in children

Katherine Luzuriaga, Molecular Medicine, University of Massachusetts Chan School of Medicine, Worcester, MA, USA

Oral Presentations:

ST2.1 – 00087 A Novel HIV-1 Immune Evasion Strategy: How Softer HIV-1 Infected cells Preferentially Resist Cytotoxic T Lymphocytes (CTLs)

L. Leyre¹, F. Mustapha², A. Herrera¹, M. Huse², R.B. Jones¹

¹Weill Cornell Medicine - New York (United States); ²Memorial Sloan Kettering Cancer Center - New York (United States)

ST2.2 – 00065 Models and correlates of intact and defective HIV DNA decay in Kenyan children over 8 years of ART

<u>D. Reeves</u>¹, M. Litchford², C. Fish², A. Farrell-Sherman¹, N. Ahmed¹, M. Poindexter², N. Cassidy², J. Neary³, D. Wamalwa⁴, A. Langat⁴, D. Chebet⁴, H. Moraa⁴, J. Slyker³, S. Benki-Nugent³, L. Cohn¹, J. Schiffer¹, J. Overbaugh¹, G. John-Stewart³, D. Lehman¹¹Fred Hutchinson Cancer Center, University of Washington - Seattle (United States); ²Fred Hutchinson Cancer Center - Seattle (United States); ³University of Washington - Seattle (United States);

ST2.3 – 00128 Targeting Myeloid Reservoirs Harboring Replication-Competent HIV

J. Wang¹, M. Li¹, B. Sun¹, M. Laurie¹, E. Graviss¹, M. Vasquez¹, H. Zhao¹, M. Chen²

¹Houston Methodist Research Institute - Houston (United States); ²Baylor College of Medicine (United States)

ST2.4 – 00035 Bach2 controls seeding of HIV reservoirs in memory CD4+ T cells

L. Shan¹

¹Washington University in St. Louis - St. Louis (United States)

05:00PM - 07:30PM POSTER VIEWINGS
WITH CHEESE & WINE

08:00AM 10:00AM Session 7: Human Studies

Chairperson: Nancie Archin - Unc Chapel Hill - Chapel Hill, USA

7.0 Diversity in clinical studies: identifying and overcoming barriers
Esper Kallás - University of Sao Paulo & Butantan Institute, São Paulo, Brazil

Oral Presentations:

7.1 – 00113 Safety and PD-1 receptor occupancy with low dose Nivolumab in adults living with HIV on antiretroviral therapy: NIVO-LD

<u>J. H. McMahon</u>¹, J. SY Lau¹, ², ³, L. Wallace², M. Kaiser¹, J. Chang², A. Solomon², B. Scher², P. Beech⁴, D. Price², T. A. Rasmussen², ⁵, S. R. Lewin¹, ², ³

¹Department of Infectious Diseases, Alfred Health and School of Translational Medicine, Monash University, Melbourne, Victoria, Australia; ²Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; ³Victorian Infectious Disease Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; ⁴Department of Radiology, Alfred Health, Melbourne, Victoria, Australia; ⁵Aarhus University Hospital, Aarhus, Denmark

7.2 – 00123 Peptide-induced apoptosis of latently infected cells and reduction of the HIV reservoir in people living with HIV: preliminary results of a clinical trial

<u>R. Sobhie Diaz</u>¹, M. Schechter¹, ², D. Elbirt⁴, E. Naftali³, J. T. Maricato¹, M.V. de Almeida Baptista¹, J. Galinskas¹, D. Dias¹, A. Bassini¹, N. Lisovoder⁴, J. R. Hunter¹, E. Finkelshtein³

¹Laboratório de Retrovirologia, Escola Paulista de Medicina, Universidade Federal de São Paulo; ²Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina, Universidade Federal do Rio de Janeiro; ³Code Pharma, The Netherlands (R&D based in Israel); ⁴Clinical Immunology, Allergy and AIDS Center Kaplan Medical Center, Affiliated with Hadassah-Hebrew University Medical School Jerusalem, Rehovot, Israel

7.3 – 00050 Profound reduction of HIV-1 reservoir cells over three decades of antiretroviral therapy started in early infancy

K. Ruiz-de-Luzuriaga¹, L. Vela², 3, C. Naasz², 3, S. Kalavacherla², 3, L. de Armas⁴, C. Gao², X.G. Yu², 3, S. Pahwa⁴, M. Lichterfeld², 3

¹Molecular Medicine, University of Massachusetts Chan School of Medicine, Worcester, MA, USA; ²Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; ³Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA; ⁴Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA

7.4 – 00119 Anatomic distribution of HIV-infected clones in tissues after long- term antiretroviral therapy

<u>F. Maldarelli</u>¹, A. Glassey¹, T. Nguyen¹, R. Gorelick², L. Adams¹, M. Zipparo¹, A. Rahman¹, S. Hewitt³, K. Lurain⁴, R. Ramiswami⁴, C.Y. Lau¹

¹HIV Dynamics and Replication Program, NCI Frederick, NIH, Frederick MD, 21702 USA; ²HIV Molecular Monitoring Core, LEIDOS, Frederick MD, 21702 USA; ³Department of Pathology, NCI, NIH, Bethesda MD, 20892, United States; ⁴HIV and AIDS Malignancy Branch, NCI, NIH, Bethesda MD, 20892, United States

7.5 - 00009 Postmortem analyses of the central nervous system in individuals with HIV demonstrate that infection of microglia contributes to inflammatory pathways despite viral suppression

M. Nühn¹, N. Sabet², K. Van Abeelen³, P. Schipper¹, A. Basson⁴, A. Wensing⁵, L. De Witte⁶, M. Papathanasopoulos⁴, M. Nijhuis¹, J. Symons¹, Justine T. Blonk¹, Nanouk Zuidmeer¹

¹Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 Cx Utrecht, Netherlands; ²Perinatal HIV Research Unit, University of The Witwatersrand, Johannesburg; Department of Internal Medicine, Klerksdorp-Tshepong Hospital Complex, Klerksdorp, South Africa; ³Department of Internal Medicine, Radboud University Medical Center, 6525 Aj Nijmegen, The Netherlands; ⁴HIV Pathogenesis Research Unit, Faculty of Health Sciences, University of The Witwatersrand Medical School, Private Bag 3, Wits, 2050, South Africa; ⁵Translational Virology, Department of Global Public Health & Bioethics, University Medical Center Utrecht, 3584 Cx Utrecht, The Netherlands, Netherlands; ⁶Department of Psychiatry, Icahn School of Medicine At Mount Sinai, New York, Nv 10029, United States

7.6 - 00052 The Tuberculosis Associated Microenvironment Reduces CD8+ T- Cell Control of HIV at the Site of the Coinfection

S. Cronin¹, ², A. P. Casanova², Z. Vahlas³, E. Lee¹, ², K. Fisher², A. de Vries-Egan², M. Sharabas², A. Kelleher⁴, C. Vérollet³, L. Balboa⁵, S. Palmer¹, ², G. Duette¹, ²

¹The University of Sydney, Faculty of Medicine and Health, Sydney, Australia; ²The Westmead Institute for Medical Research, Centre for Virus Research, Sydney, Australia; ³Université de Toulouse, Institut de Pharmacologie et Biologie Structurale, Toulouse, France; ⁴The Kirby Institute, UNSW, Sydney, Australia; ⁵Instituto de Medicina Experimental-CONICET, Buenos Aires, Argentina

造 10:00AM - 10:30AM COFFEE BREAK

10:30AM 12:30PM

Session 8: Antibody & Immune based Therapies

Chairperson: Marina Caskey - Rockefeller University, New York - USA

8.0 Development of multispecific antibodies for HIV John Mascola - ModeX Therapeutics, Weston, MA, USA

Oral Presentations:

8.1 - 00022 Short-term Combination Immunotherapy with bNAbs and CCR5 Blockade Mediates ART-Free Viral Control in Infant Rhesus Macagues

N. L. Haigwood¹, T. Ordonez¹, S. Pandey¹, J. Reed¹, <u>G. M. Webb</u>¹, A. J. Hessell¹, K. K. A. Van Rompay², J. K. Watanabe², J. L. Usachenko², J. Sacha¹

¹Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA; ²California National Primate Research Center, Univ. of California, Davis, CA, USA

8.2 – 00072 Early intervention with an indoline CD4-mimetic compound that sensitizes HIV-1-infected cells to ADCC favors post-treatment HIV control in humanized mice

L. Zhu¹, H. Kim¹, J. Richard²,³, L. Marchitto²,³, C. J. Fritschi⁴, D. Yang⁴, S. L. T. Boodapati¹, Y. Sun¹, H-C. Chen⁴, G. Beaudoin-Bussières²,³, M. Benlarbi²,³, É. Bélanger²,³, K. Dionne²,³, D. Chatterjee², C. Bourassa², H. Medjahed², F. Gaudette²,³, M. A. Brehm⁵, D. L. Greiner⁵, L. D. Shultz⁶, J. G. Sodroski⁷, A.B. Smith III⁴, A. Finzi²,³, P. Kumar¹

Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; ²Centre de Recherche du CHUM, Montreal, QC, Canada; ³Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada; ⁴Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; ⁵Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; ⁶Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, and Department of Microbiology and Immunobiology, Division of AIDS, Harvard Medical School, Boston, MA, USA; ⁷Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA

8.3 – 00088 Epitope-Driven Effector Functions of Broadly Neutralizing Antibodies Across Diverse HIV Isolates: Insights for Next-Generation Therapeutics

C. Li¹, M. Phelps¹, J.M. Brady¹, A.D. Nitido¹, V. Okonkwo¹, D. Lingwood¹, A.B. Balazs¹

Ragon Institute of Mass General, Mit, and Harvard - Cambridge, Massachusetts, United States

8.4 – 00081 IL-15/IL-15RA Therapy Enhances Control of Viral Rebound in SIV- Infected Macaques S. Govindaraj¹, H. Babu¹, S. Ali², S.A. Rahman³, S.P. Ribeiro³, J. Tomalka³, A. Sharma³, R.P. Sekaly³, F. Villinger², R.R. A mara¹, V. Velu¹

¹Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; ²Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; ³New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA

8.5 – 00015 Changes in the composition of HIV-1 reservoir of PWH on ART and dasatinib

M. Manzanares¹, ², G. Casado-Fernández¹, ³, A. Simón-Rueda¹, ², M. Torres¹, ⁴, M. Coiras¹, ⁴

¹Immunopatology and Viral Reservoirs Unit, National Center of Microbiology, Instituto De Salud Carlos III - Majadahonda, Spain; ²PhD Program in Biomedical Sciences and Public Health, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain; ³Faculty of Sciences, Universidad de Alcalá, Madrid, Spain; ⁴Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain

8.6 – 00097 Increased HIV-1 proviral reactivation and reservoir size in people with HIV on anticancer treatment

L. Perez-Blazquez¹, ², ⁵, E. Valencia³, L. Martin-Carbonero³, E. Mateos¹, ⁴, M. Coiras¹, ⁴

¹Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; ²Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Spain; ³Infectious Diseases Service. Hospital Carlos III, Madrid, Spain; ⁴Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; ⁵PhD Program in Biomedical Sciences and Public Health, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain

12:30 PM **Closing Remarks**

The Steering Committee: 01:00 PM

Ann Chahroudi - Emory University, Atlanta, Georgia, United States;

Mary Kearny - HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD, USA Alain Lafeuillade - Toulon, FRA

David Margolis - University of North Carolina at Chapel Hill, USA

Karl Salzwedel - NIAID, Bethesda, USA

Mario Stevenson - University of Miami Leonard M. Miller School of Medicine, Miami, USA

POSTER PRESENTATIONS

The poster sessions will take place in the Grand Ballroom and presenters are requested to stand next to their posters during the cheese and wine attended poster sessions:

- Wednesday, December 11: 05:00PM 07:30PM
- Thursday, December 12: 05:00PM 07:30PM

POSTER THEMES

	Poster Numbers	Pages
Basic Science of HIV Persistence	PP1.1 - PP1.21	22 - 25
Virology of HIV Persistence	PP2.1 - PP2.11	25 - 27
Drug Discovery & Development, Pharmacology, Novel approaches	PP3.1 - PP3.7	27 - 28
Immunology of HIV Persistence	PP4.1 - PP4.16	28- 31
In Vitro and Animal Model Studies of HIV Persistence	PP5.1 - 5.11	31 - 33
Cell and Gene Therapies	PP6.1 - PP6.8	33 - 34
Human Studies	PP7.1 - PP7.10	34 - 36
Antibody & Immune - Based Therapies	PP8.1 - PP8.9	36 - 38

All abstracts presented at this year's HIV Persistence Workshop will be published as an online supplement to the Journal of Virus Eradication,

1: BASIC SCIENCE OF HIV PERSISTENCE

PP1.1 – 00164 Nuclear retention of unspliced HIV-1 RNA as a novel reversible posttranscriptional block in latency

A. Dorman¹, ², [#], M. Bendoumou³, [#], A. Valaitiene⁴, [¶], J. Wadas¹, ², [¶], H. Ali¹, ², A. Dutilleul³, P. Maiuri⁵, L. Nestola³, M. Bociaga-Jasik⁶, G. Mchantaf⁷, ⁸, ⁹, V. Avettand-Fenoël⁷, ⁸, ⁹, A. Marcello¹⁰, K. Pyrc¹¹*, A. O. Pasternak⁴*, §, C. V. Lint³*, §, <u>A. Kula-Pacurar</u>¹*, §

¹ Laboratory of Molecular Virology, Malopolska Centre 9of Biotechnology, Jagiellonian University, Krakow, Poland; ² Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, 30-348, Krakow, Poland; ³ Service of Molecular Virology, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles (ULB), Gosselies, Belgium; ⁴ Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; ⁵ Dept of Molecular Medicine and Medical Biotechnology, Università degli Studi di Napoli "Federico II", Naples, Italy; ⁶ Department of Infectious Diseases, Jagiellonian University Medical College, Krakow, Poland; ⁷ Université Paris Cité, INSERM U1016, CNRS UMR8104, Institut Cochin, Paris, France; ⁸ CHU d'Orléans, France; ⁹ Université d'Orléans, France; ¹⁰ Laboratory of Molecular Virology, The International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy; ¹¹ Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland

*Corresponding author (s)

These authors contributed equally to this work, ¶ These authors contributed equally to this work, § These authors contributed equally to this work (co-senior authors)

PP1.2 – 00165 Inhibition of ARP2/3 by HIV Nef Leads to Impaired CD4+ T Cell Function & Dysregulation of Immunity within Progressors but not all HIV Controllers

D. Dunn¹, J. Malgady¹, B. Lima¹, J. M. Crater², P. M. Del Río Estrada³, M.F. Torres-Ruiz³, Y. A. Luna-Villalobos³, M. González-Navarro³, C. Kovacs⁴, C. Kang⁵, D. Mullins^{6,7}, P. Jolicoeur⁸, S. Ávila-Ríos³, D. F. Nixon^{1,2}, R. L. <u>Furler O'Brien^{1,2,9}</u>,*

¹ Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; ² Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, 413 E 69th St., Belfer Research Building, New York, NY 10021, USA; ³ Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico; ⁴ Maple Leaf Medical Clinic, Toronto, ON, Canada; ⁵ Abiosciences, South San Francisco, CA, USA; ⁶ Department of Medicine, Division of Hematology/Oncology, University of California, San Francisco, CA, USA; ⁷ Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, San Francisco, CA, USA; ⁸ Department of Microbiology/Immunology, University of Montreal, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; ⁹ Gladstone Institute of Virology, Gladstone Institutes, San Francisco, CA, USA

PP1.3 – 00155 Robust proviral transcription but complete restriction of HIV virion production in fetal liver macrophages: a new model for viral persistence in tissue-resident macrophages

D. Gludish^{1,*}, J. Choi¹

PP1.4 - 00138 SIV and HIV Infection of Mast Cells

K. L. Walker¹,*, Y. Thomas¹, S. Arif¹, S. Samer¹, C.¹, Rebecca Krier¹, J. A. O'Sullivan¹, R. L. Redondo¹, A. M. Carias, Thatianne Russo, Michael McRaven, Edward Allen, Christopher Thomas Thuruthiyil, Flora Engleman, E. Martinelli¹, F. Villinger², B. Bochner¹, T. J. Hope¹

¹ Northwestern University - Chicago, United States, ² New Iberia Research Center, University of Louisiana Lafayette, United States

¹ Department of Microbiology and Immunology Cornell University, College of Veterinary Medicine Ithaca, NY

PP1.5 – 00132 Tunneling Nanotubes are essential for the propagation of HIV infection at early stages of infection and reactivation

S. Valdebenito-Silva¹*, E. Eugenin², A. Ono³

¹Departmentof Neurobiology, University of Texas MedicalBranch (UTMB), Galveston, TX, USA; ²Department of Neurobiology, University of Texas MedicalBranch (UTMB), Galveston, TX, USA; ³Department of Microbiology & Immunology, University of Michigan MedicalSchool, Ann Arbor, MI, USA

PP1.6 - 00127 ETS1 Regulates Differential Control of HIV latency and Viral Transcription in CD4 T Cells A. Manickam¹, ², T.L. Hafer³, ⁴, A. Felton³, ⁴, N.M. Archin¹, ², D.M. Margolis¹, ², ⁵, M. Emerman³, ⁴, E.P. Browne¹, ², ⁵ Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; ²UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; ³Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America; ⁴Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America; ⁵Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

PP1.7 - 00104 Identification of a new role for the E3-ubiquitin ligase activity of UHRF1 promoting HIV-1 transcriptional silencing

M. Bendoumou¹, L. Nestola¹, A. Dutilleul¹, A. Ait-Ammar¹, E. Plant¹, P.I. Vervlimmeren¹, C. Van Lint¹ ¹University of Brussels (ULB), Service of Molecular Virology, Brussels, Belgium

PP1.8 – 00103 Role of the cellular transcription factor Yin-Yang 1 (YY1) in the transcriptional activity of the HIV-1 intragenic cis-regulatory region (IRR)

<u>A. Dutilleul</u>^{1*}, L. Stiernon¹, T. Marray¹, B. Maryam¹, O. Hernalsteens¹, L. Nestola¹, C. Vanhulle¹, C. Van Lint¹

¹Université Libre De Bruxelles, Service of Molecular Virology - Bruxelles, Belgium

PP1.9 – 00102 Targeting Latent HIV Reservoirs: Effectiveness of Combination Therapy with HDAC and PARP Inhibitors

A. McGraw¹, H. Tibebe¹, D. Marquez¹, S. Gagliardi¹, G. Hillmer¹,

C. Sullivan¹, H. Haidery¹, T. Hotchikin¹, A. Keating¹, C. Izumi¹, C. Cropp¹, <u>T.Izumi</u>¹, ²

¹Department of Biology, American University, Washington D.C. 20016, USA; ²District of Columbia Center for AIDS Research, Washington D.C. 20052, USA

PP1.10 – 00098 Gene expression dynamics following dasatinib treatment and discontinuation in people with HIV-1: case report

M. Remesal González^{1*}, S. Rodriguez-Mora², ³, R. González-Soltero¹, M. Torres², ³, M. Coiras², ^{3*}

¹Department of Health Sciences, Faculty of Biomedical and Health Sciences, European University of Madrid, Madrid, Spain; ²Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain; ³Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain

PP1.11 – 00021 Impact of HIV-1 Tat and TAR Sequence Diversity on Clinical and Reservoir Characteristics

M. R. Arikatla¹, N. Sonela¹, P. Khadka¹, Z. Tang¹, E. Benko², C. Kovacs², M. Caskey³, R.M. Galiwango⁴, T. Kityamuweesi⁴, P. Buule⁴, S. Tomusange⁴, A. Anok⁴, S. J. Reynolds⁵,⁶, T. C. Quinn⁵,⁶, J. L. Prodger⁷, A. D. Redd⁵,⁶, C. Muzoora⁸, J.E. Haberer⁹, J. N. Martin¹⁰, D. R. Bangsberg¹¹, T. Wilkin¹, R. B. Jones¹, G.Q. Lee¹

¹Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA; ²Maple Leaf Medical Clinic, Toronto, ON; ³Rockefeller University, New York, NY; ⁴Rakai Health Sciences Program, Kalisizo, Uganda; ⁵Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; ⁶Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; ⁷Department of Microbiology and Immunology, Western University, London, ON, Canada; ⁸Mbarara University of Science and Technology, Mbarara, Uganda; ⁹Mass General Hospital, Boston, MA, USA; ¹⁰University of California, San Francisco, CA, USA; ¹¹VinUniversity, Hanoi, Vietnam

PP1.12 – 00061 Nanopore sequencing enables capturing of long HIV-1 reads for multi-omic analysis of HIV-1-infected cells

Y. Qi¹,²,³, H. Courtney²,³,⁴, A. Courtney²,⁵, T. Lu²,⁶, L. Vella²,³,⁶

¹School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; ²Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA; ³Center for AIDS Research, University of Pennsylvania, Philadelphia, PA, USA; ⁴Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA; ⁵Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA; ⁶Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

PP1.13 - 00083 The lysine methyltransferase SMYD5 methylates HIV-1 Tat K28/K29

D. Boehm¹, S. Weirich², M. Schnolzer³, A. Jeltsch², M. Ott¹, ⁴, ⁵

¹Gladstone Institute of Virology, University of California San Francisco, San Francisco, CA, USA; ²Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany;
³Functional Proteome Analysis, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany;
⁴Department of Medicine, University of California San Francisco, San Francisco, CA, USA; ⁵Chan Zuckerberg Biohub, San Francisco, CA, USA

PP1.14 – 00005 Q4ddPCR - A New High-Throughput Multicolor Droplet Digital PCR Assay for Precise Intact Reservoir Quantification

R. Scheck¹, T. T. Huynh², M. Melzer³, G. Gladkov², L. Buchauer³, R. B. Jones², C. Gaebler¹

¹Laboratory of Translational Immunology of Viral Infections, Department of Infectious Diseases and Critical Care Medicine, Charité-Universitätsmedizin Berlin, and Berlin Institute of Health, Berlin, Germany; ²Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; ³Laboratory of Systems Biology of Infectious Diseases, Charité-Universitätsmedizin, Berlin, Germany

PP1.15 – 00056 Transcriptional analysis of clonal cultures of CD4+ T cells harboring real intact provirus from people living with HIV

C. Bittar¹, A. R. Teixeira¹, T. Y. Oliveira¹, M. J. Fumagalli¹, G. S. Santos¹, G.H.J. Weymar¹, N. Linden², I. A.T.M. Ferreira², R.B. Jones³, M. Caskey¹, M. Jankovic¹, M. C. Nussenzweig¹,³

¹Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA; ²Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA; ³Howard Hughes Medical Institute, Chevy Chase, MD, USA

PP1.16 - 00059 Identification of solo-LTR HIV provirus in vitro

F. Li¹,*, G. Li¹, R. Gorelick¹, L. Kelly¹, <u>F. Maldarelli¹</u>,*

¹Drug Resistance Program, National Cancer Institute, The National Institutes of Health - Frederick, United States

PP1.17 – 00054 Optimizing Detection of HIV-1 Infected Cells: A Novel Bioinformatics Pipeline Leveraging Kraken2 for Single-Cell Multiomics Datasets

L. Garrido-Sanz¹,*, L.B. Soriaga², E. Wong², M. C. Puertas¹,³, J. Dalmau¹, P. Coll¹,³,⁴,⁵, B. Mothe¹,³,⁵,⁶, B. Clotet¹,³,⁶, A. Telenti², J. Martinez-Picado¹,³,⁶,⁷,*, <u>S. Morón-López</u>¹,³,*

¹IrsiCaixa, Badalona, Spain; ²Vir Biotechnology, San Francisco, California, United States; ³CIBERINFEC, Madrid, Spain; ⁴BCN CheckPoint - Projecte dels NOMS-HISPANOSIDA, Barcelona, Spain; ⁵Fight Infections Foundation, Badalona, Spain; ⁶Department of Infectious Disease and Immunity, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain; ⁷Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain

J.M-P and S.M-L contributed equally to this work and are both corresponding/main authors.

PP1.18 – 00043 Blockade of m6A machinery in HIV latently infected primary CD4+ T cells enhances HIV-1 transcription, RNA export and protein translation, and sensitizes cells for apoptosis

E. Honeycutt¹,*, F. Ye¹, F. Kizito¹, T. Sweet¹, J. Karn¹

¹Case Western Reserve University

PP1.19 – 00036 Unexpected Redundancy of the TNF/NF-kB Axis in HIV-1 Restriction and Latency Reversal in Primary Human MDM Polarized to M1 Cells

G. Poli¹, <u>I. Pagani</u>², *, S. Ghezzi², E. Vicenzi²

¹San Raffaele University and Scientific Institutescientific - Milano, Italy;

²San Raffaele Scientific Institute - Milano, Italy

PP1.20 – 00032 A chemical screen of chromatin targeting compounds identifies TAF1 as a novel regulator of HIV latency

S.D. Burgos¹, ², *, M. Ward², L. James³, D.M. Margolis¹, ², ³, P. Browne¹, ²

¹Department of Microbiology and Immunology, UNC Chapel Hill, NC, United States; ²HIV Cure Center, Institute for Global Health and Infectious Diseases, UNC Chapel Hill, NC, United States; ³Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, UNC Chapel Hill, NC, United States; ⁴Department of Medicine, UNC Chapel Hill, NC, United States

PP1.21 – 00006 PU.1 inhibition and HIV-1 reactivation: A novel approach to the eradication of HIV-1 latently infected non-T cell reservoirs

H. Kitamura¹,, S. Sukegawa², <u>K. Strebel</u>¹,*

¹NIH, NIAID, Laboratory of Molecular Microbiology - Bethesda, United States; ²Tokyo Medical and Dental University, Department of Molecular Virology - Tokyo, Japan

2: VIROLOGY OF HIV PERSISTENCE

PP2.1 - 00175 HIV genome derived from the brain microglia isolated from PWH on ART

H. Chen¹, *, X. Li¹, V.R. Chirasani², ⁵, K.J. Bar⁴, S. Gianella⁴, D.M. Margolis¹, Y. Tang¹, G. Jiang¹, ², *

¹UNC HIV Cure Center, Institute of Global Health & Infectious Diseases, University of North Carolina at Chapel Hill, NC 27599, USA; ²Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; ³Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; ⁴Division of Infectious Diseases and Global Public Health, University of California at San Diego, San Diego, CA, USA; ⁵R. L. Juliano Structural Bioinformatics Core, Center for Structural Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

PP2.2 – 00177 Late Increases in Intact Proviral DNA Reveal Variable HIV-1 Reservoir Dynamics

<u>L. Brandt</u>¹,*, S. Patro², W. Wang², N. Mckenna¹, E. Halvas¹, J. Cyktor¹, T. Gandhi³, J. Eron⁴, R. Bosch⁵, M. Kearney⁶, D. Mcmahon¹, J. Mellors¹

¹University of Pittsburgh - Pittsburgh, PA (United States); ²Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD (United States); ³Massachusetts General Hospital - Boston, MA (United States); ⁴University of North Carolina - Chapel Hill, NC (United States); ⁵Harvard T.H. Chan School of Public Health - Boston, MA (United States); ⁶HIV Dynamics & Replication Program, Center for Cancer Research, NCI, Frederick, MD (United States)

PP2.3 – 00168 Blocks to HIV transcriptional initiation, elongation, and splicing contribute differentially to inefficient virus reactivation across authentic reservoir-harboring CD4+ T-cell clones

T. Huynh¹,*, I. Ferreira¹, A. Herreira¹, E. Stone¹, N. Linden¹, M. Caskey², C. Bittar², M.C. Nussenzweig², B. Jones¹

¹Infectious Disease Division - Department of Medicine, Weill Cornell Medicine, New York, NY, USA; ²Laboratory of Molecular Immunology - The Rockefeller University, New York, NY, USA

PP2.4 – 00157 Development of a Virology Quality Assurance Program to Assess Inter-lab Reproducibility of HIV-1 Reservoir Assays

<u>B. Maria</u>¹,*, D. Weed¹, S. Scianna¹, B. Hora¹, T. Thane¹, M. Carper¹, R. Louzao¹, W. Rountree¹, M.s Stone², M. Busch², E. R. Wonderlich³, K. W. Crawford³, T. N. Denny¹

¹Duke University School of Medicine - Durham (United States); ²Vitalant Research Institute - San Francisco (United States); ³National Institute of Allergy and Infectious Diseases, Division of Aids - Bethesda (United States)

PP2.5 – 00122 The role of Vpr in the epigenetic regulation of HIV-1 latency

C. Lewis¹, *, E. Browne¹

¹Department of Microbiology & Immunology, UNC, Chapel Hill, NC, USA

PP2.6 – 00048 The HIV reservoir can be established in either quiescent or senescent CD4 T cells

R. Matus Nicodemos¹, *, D. Ambrozak¹, D. Douek¹, R. Koup¹

¹Vaccine Research Center (VRC) of the National Institute of Allergy and Infectious Diseases (NIAID) at the National Institutes of Health (NIH), Bethesda (United States)

PP2.7 – 00034 The Cross-Subtype Intact Proviral DNA Assay Detects >97% of Proviral Sequences from Diverse HIV Clades

M. Litchford1,*, S. Fish¹, A.J. Cassidy¹, A. Langat², D. Chebet², H. Moraa², S. Benki-Nugent³, J. Slyker³, D.B. Reeves¹, E. Maleche-Obimbo², G. John-Stewart³, D. Wamalwa², J. Overbaugh¹, <u>D.A. Lehman</u>¹,*

¹Fred Hutchinson Cancer Center - Seattle (United States); ²University of Nairobi - Nairobi (Kenya); ³University of Washington - Seattle (United States)

PP2.8 – 00051 Full-length sequencing of HIV-1 proviruses in large infected cell clones in PWH on ART reveals a predominance of solo-LTRs

S. Akter¹, *, D. Demirov², D. Brandt³, J. Gluck¹, E.K. Halvas³, J. Mellors³, X. Wu², S.C. Patro², J.W. Rausch¹, M.F. Kearney¹

¹HIV Dynamics & Replication Program, Center for Cancer Research, NCI, Frederick, Maryland; ²Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland; ³Department of Medicine, University of Pittsburgh, Pittsburgh, PA

PP2.9 – 00007 HIV-PULSE as a new platform to unveil HIV-1 reservoir composition: intactness, drug resistance, tropism and immune therapy predictions

<u>S. De Braekeleer</u>¹,*, L. Termote¹, S. Rutsaert¹, L. Lambrechts¹, W.A. Vos²,³, A. Groenendijk⁴, L. Van Eekeren³, M. Blaauw³,⁵, J. Stalenhoef², A. Verbon⁴,⁶, M. Berrevoets⁵, E. Blomme¹, M. Netea³,⁷, A.J. Van Der Ven⁴, S. Gerlo¹, L. Vandekerckhove¹,⁸

¹HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University, Belgium; Department of Internal Medicine and Infectious Diseases, OLVG, Amsterdam, Netherlands; Department of Internal Medicine and Radboudumc Community for Infectious Diseases (RCI), Radboudumc, Nijmegen, Netherlands; Department of Internal Medicine and Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Erasmus University, Rotterdam, Netherlands; Department of Internal Medicine and Infectious Diseases, Elizabeth-TweeSteden Ziekenhuis, Tilburg, Netherlands; Department of Internal Medicine, University Medical Center, Utrecht, Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Germany; Buniversity Hospital Ghent, Belgium

PP2.10 - 00029 Chromatin regulator p400 complex promotes HIV-1 latency by suppressing HIV-1 locus transcriptional elongation and promoting a host CD4+ T cell state unfavorable for viral amplification C. Li¹, L. P. Mori¹, ², Y.Ma¹, T.T. Venables¹, A.T. McAuley², R.R. Milione¹,

M.E. Pipkin¹,², S.T. Valente¹,²,*

¹Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States; ²The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458, United States

PP2.11 – 00011 The cellular factors BRD4 and HSF1 are criticalinitiators of P-TEFb-dependent HIV-1 latency reversal in primary T cells

M. Yang¹,*, U. Mbonye¹, S. Wu², C.M. Chang², J. Karn¹

¹Department of Molecular Biology and Microbiology, Case Western Reserve University Medical School - Cleveland (United States); ²Simmons Comprehensive Cancer Center, Department of Pharmacology and Department of Biochemistry, UT Southwestern Medical Center - Dallas (United States)

3. DRUG DISCOVERY & DEVELOPMENT, PHARMACOLOGY, NOVEL APPROACHES -

PP3.1 – 00160 Macrophage Training Reactivates Latent HIV-1 from HAART- suppressed PBMCs of PLWH <u>S. John</u>¹,*, H. James¹, C. Perritano¹, I. Fraser¹

¹Signaling Systems Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health - Bethesda (United States)

PP3.2 – 00156 Endogenous Cytokine Reporter Macrophages Facilitate Identification of Novel Training Compounds that can Reactivate and Initiate Clearance of Latent HIV

S. P. John¹, D. Dabral², C. M. Perritano¹, H. James¹, J. Marugan², M. Henderson², <u>I. D. C. Fraser¹</u>

¹Signaling Systems Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, USA; ²The Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, USA

PP3.3 – 00121 Exploring the Effects of Benzodiazepines on a Novel Mechanism of Control in HIV-1 Infected Human Monocyte Derived Macrophages

C. Wallace¹,*, R. Van Duyne¹, P.J. Gaskill¹, Z. Klase¹

¹Drexel University College of Medicine - Philadelphia (United States)

PP3.4 - 00100 Retinoids enhance NK effector functions against HIV infected CD4 T cells

E. Mcmahon¹, *, R. Lynch¹, A. Bosque¹

¹Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington DC 20037. USA

PP3.5 - 00089 Investigating novel designed and synthesized PKC modulators for use in "kick and kill" HIV cure strategies

<u>J. Morán</u>¹, *, Z. Gentry², O. Mcateer², J. Hamad², J. T. Kim³, P. Wender⁴, ⁵, J. Zack⁶, ⁷, M. Marsden¹, ⁸

¹Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine, USA;

Department of Chemistry, Stanford University, Stanford, USA; Department of Medicine, Division of Infectious Diseases, University of California Los Angeles; ⁴Department of Chemistry, Stanford University, USA; ⁵Department of Chemical and Systems Biology, Stanford University, USA; ⁶Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles; ⁷Department of Medicine, Division of Hematology and Oncology, University of California Los Angeles; ⁸Department of Medicine, Division of

PP3.6 - 00064 Novel synthesized protein kinase C modulators show enhanced HIV latency reversal properties and synergize with a BET bromodomain inhibitor

T. C. Chou¹, J. A. Moran¹, J. Zack², P. Wender³, M. D. Marsden¹, ⁴ ¹Department of Microbiology and Molecular Genetics, University of California, Irvine, USA; ²Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, USA; ³Department of Chemistry, Stanford University, USA; ⁴Department of Medicine, Division of Infectious Disease, University of

PP3.7 - 00002 Towards a functional cure for HIV-1 infection: BRD4 modulator ZL0580 and LEDGINs additively block and lock HIV-1 transcription

E. Pellaers¹, *, A. Denis¹, W. Hannes¹, A. Bhat¹, Z. Debyser¹

¹Laboratory for Molecular Virology and Gene Therapy - Leuven (Belgium)

Infectious Diseases, School of Medicine, University of California Irvine

4. IMMUNOLOGY OF HIV PERSISTENCE -

California, Irvine, USA

PP4.1 - 00179 Distinct Immunity Signatures Uncover Diverse Profiles Among Elite HIV Controllers

<u>J. L. Lima Calandrini de Azevedo</u>¹,*, Aarthi Talla⁴, M. I. Peluso⁵, T. Dalhausen⁵, B. Hoh⁵, S. Deeks⁵, S. Lee⁵, A. A. Sharma¹, ², ³, R.-P. Sekaly¹, ², ³

¹Pathology Advanced Translational Research Unit (PATRU). Emory University, Atlanta, GA, USA; ²Emory Vaccine Center, Emory University, Atlanta, GA, USA; ^aWinship Cancer Center, Emory University, Atlanta, GA, USA; ⁴Immunasyst, Scottsdale, AZ, USA; ⁵University of California, San Francisco and San Francisco General Hospital,

San Francisco, CA, USA

PP4.2 - 00163 Aging immune system alters HIV/SIV reservoirs

S. Byrareddy¹, *, S. Debapriya¹, M. Mahesh², V. Francois³, P. Suresh⁴, A. Arpan¹

¹University of Nebraska Medical Center - Omaha (United States); ²Texas Biomedical Research Institute - San Antonio (United States); ³Texas Biomedical Research Institute - Lafayette (United States); ⁴University of Miami Miller School of Medicine - Miami (United States)

PP4.4 - 00151 Trained immunity as an exacerbating factor in Chronic HIV and HIV-Associated **Neurocognitive Disorders**

Z. Capriotti¹, *, C. Wallace¹, R. Van Duyne¹, Z. Klase¹, ²

¹Department of Pharmacology and Physiology, Drexel College of Medicine, Philadelphia, PA, USA; ²Center for Neuroimmunology and CNS Therapeutics, Institute for Molecular Medicine and Infectious Disease, Drexel College of Medicine, Philadelphia, PA, USA

PP4.5 – 00144 Unveiling Cellular Phenotypes and Transcriptional Dynamics in Early Treated Acute HIV Infection

S. Rutsaert¹, *, J. De Clercq¹, L. Vandekerckhove¹, S. Gerlo²

¹HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences - Ghent (Belgium); ²Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences - Ghent (Belgium)

PP4.6 - 00115 Disruption of intestinal germinal centers during HIV infection

F. Cossarini¹,²,*, A. Krek¹,³, P. Canales-Herrerias²,⁴, M. Tankelevich²,⁴, B. Chen¹,², J. Aberg¹,², F. Petralia³, A. Polydorides⁴,⁵, S. Mehandru²,⁴

¹Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai; ²Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai; ³Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai; ⁴Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai; ⁵Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai

PP4.7 – 00101 Immunotolerance during recent HIV infection and rapid disease progression

M. B. Diaz¹,², B. Scarpelini², J. R. Hunter², I. D. Silva², J. B. Pesqueiro², M. Schechter³, R. S. Diaz²

¹University of São Paulo, Brazil; ²Federal University of São Paulo, Brazil; ³Federal University of Rio de Janeiro, Brazil

PP4.8 - 00099 Activation of Immune Effector Responses in Newborns with Perinatal HIV infection

L. De Armas^{1*}, A. Iyer¹, V. Dinh¹, S. Pallikkuth¹, R. Pahwa¹, P. Vaz², M.G. Lain², <u>S. Pahwa¹*</u>

¹Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA;

²Fundação Ariel Glaser contra o SIDA Pediátrico, Maputo, Mozambique

PP4.9 – 00090 Changes in CPSF6 and SC35 expression and subcellular localization induced by dasatinib and ponatinib as mechanism to interfere with HIV-1 proviral integration in macrophages

C. Sánchez Menéndez^{1*}, M. Manzanares¹, E. Mateos¹, V. Planelles², M. Coiras^{1*}

¹Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto De Salud Carlos Iii - Madrid (Spain); ²Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine - Salt Lake City (United States)

PP4.10 – 00082 Simultaneous measurement of HIV proviral DNA and cell associated RNA in CSF cells of PWH using single-cell Multiomics

B. Orlinick¹*, S. Mehta¹, C. Lu¹, A. Pang², B. Das¹, S. Spudich¹, Y. Kluger¹, M. Corley², <u>S. Farhadian</u>¹*

¹Yale School of Medicine - New Haven (United States); ²Weill Cornell Medicine - New York (United States)

PP4.11 – 00077 Long-term antiretroviral treatment reduces the reactivation capacity of HIV-1 reservoir A. Simón Rueda^{1,3,4},, G. Casado Fernández¹, M. Torres¹, V. Estrada², O. de la Calle¹, C. Sánchez¹, E. Mateos¹, V.

Víctor², N. Cabello², M. Coiras¹,

¹Institute of Health Carlos III - Madrid (Spain); ²Hospital Clínico San Carlos - Madrid (Spain); ³Biomedical

Research Center Network in Infectious Diseases (CIBERINFEC); ⁴PhD Program in Biomedical Sciences and Public Health (UNED), Hospital Clínico San Carlos

PP4.12 – 00068 Persistence and Maturation of B Cell Lineages during ART initiation in Chronic SHIV-infected Juvenile Rhesus Macaques

Y. Chen¹, R. Tuck¹, D. Cain¹, R.J. Edwards¹, T. Keyes², M. van der Mescht², K. Mansouri¹, T. Spence¹, F. Marino⁴, C. Bowman¹, S. Rohr¹, M. Berry¹, K. Wiehe¹, K. Bar⁴, G. Ferrari¹, W.B. Williams¹, ², ³

¹Duke Human Vaccine Institute, Duke University School of Medicine, Durham NC, 27710, USA; ²Department of Surgery, Duke University School of Medicine, Durham NC, 27710, USA; ³Department of Integrative Immunobiology, Duke University School of Medicine, Durham NC, 27710, USA; ⁴Perelman School of Medicine, University of Pennsylvania, Philadelphia PA, 19104, USA

PP4.13 – 00012 Distinct CD4 tissue-resident memory (TRM) depletion and CD8 TRM function between the small and large intestine indicate region-specific mechanisms for gut pathology in people with HIV (PWH)

M. Marin¹,*, O. Asowata¹, S. Nyquist², H. Baharlou³, K. Hu³, P. Mthabela⁴, L. Madziwa⁴, K. Chetty⁴, F. Karim⁴, V. Manzini⁵, S. Kader⁶, F. Madela⁵, A. Harman⁵, A. Leslie¹, A. Shalek³, H. Kløverpris⁷

¹Africa Health Research Institute Ahri - Durban (South Africa); ²Institute For Medical Engineering and Science, Department of Chemistry - Boston (United States); ³The Westmead Institute For Medical Research - Sydney (Australia); ⁴Africa Health Research Institute, Basic and Translational Science - Durban (South Africa);

⁵Inkosi Albert Luthuli Central Hospital, Division Upper Gastrointestinal Tract and Colorectal Surgery - Durban (South Africa); ⁶Dr Pixley Ka Isaka Seme Memorial Hospital, Durban, South Africa - Durban (South Africa); ⁷Africa Health Research Institute Ahri-University of Copenhagen - Durban (South Africa)

PP4.14 – 00024 HIV RNA+ cells from ART-suppressed PWH exhibit transcriptional profiles distinct from those during active viremia

J. Frouard¹,*, S. Telwatte², X. Luo¹, N. Elphick¹, R. Thomas¹, D. Arneson³, PDep. Roychoudhury⁴, A. Butte³, J. Wong⁵, R. Hoh⁶, S. Deeks⁶, S. Lee⁷, S. Yukl⁵, N. Roan¹

¹Gladstone Institutes - San Francisco (United States); ²Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute of Infection and Immunity - Melbourne (Australia); ³Bakar Computational Health Sciences Institute, University of California - San Francisco (United States); ⁴Department of Laboratory Medicine and Pathology, University of Washington, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research - Seattle (United States); ⁵San Francisco Veterans Affairs (VA) Medical Center and University of California - San Francisco (United States); ⁶Division of HIV, Infectious Diseases and Global Medicine, University of California - San Francisco (United States); ⁷Zuckerberg San Francisco General Hospital and The University of California - San Francisco (United States)

PP4.15 - 00030 Circulating Acyl-CoA-Binding Protein perturbs metabolism and inhibits T-cell function in people living with HIV

<u>S. Isnard</u>^{1,2,3},*, N. Ghahari⁷, L. Royston^{1,2,3,4}, T. Mabanga^{1,2}, C. A. Berini^{1,2}, N. F. Bernard^{1,5,6}, J. van Grevenynghe⁷, G. Kroemer⁸, ⁹, ¹⁰, J.-P. Routy¹, ², ¹¹

¹Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada; ²Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada; ³CIHR Canadian HIV Trials Network, Vancouver, BC, Canada; ⁴Division of Infectious Diseases, Geneva University Hospitals, Switzerland; 5 Division of Experimental Medicine, McGill University, Montreal, QC, Canada; ⁶Division of Clinical Immunology, McGill University Health Centre, Montreal, QC, Canada; ⁷Centre Armand-Frappier Santé-Biotechnologie, Institut National de la Recherche Scientifique, Laval, QC, Canada; ⁸Centre de Recherche des Cordeliers, Université de Paris, Inserm U1138, Paris, France; ⁹Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; ¹⁰Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; 11 Division of Hematology, McGill University Health Centre, Montreal, QC, Canada

PP4.16 - 00014 Reduction of HIV-1 reservoir following mpox infection

G. Casado Fernández¹, ³, *, O. De La Calle-Jiménez¹, ², V. Estrada², ⁴, M. Torres¹, ⁴, M. Coiras¹, ⁴

¹Immunopathology and Viral Reservoirs, National Center of Microbiology, Instituto De Salud Carlos Iii, Madrid, Spain - Madrid (Spain); ²Internal Medicine Service, Hospital Universitario Clínico San Carlos, Madrid, Spain, Madrid (Spain); ³Faculty of Sciences, Universidad de Alcalá, Madrid, Spain; ⁴Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Majadahonda, Madrid, Spain

PP4.17 - 00063 Distinct immune profiles in children living with HIV based on timing and duration of suppressive antiretroviral treatment

Madeline J. Lee¹, ²†, Morgan L. Litchford³, Elena Vendrame¹, Rosemary Vergara¹, Thanmayi Ranganath¹, Carolyn S. Fish³, Daisy Chebet⁴, Agnes Langat⁵, Caren Mburu⁴, Jillian Neary⁶, Sarah Benki⁷, Dalton Wamalwa⁴, Grace John-Stewart⁷, Dara A. Lehman³, , <u>Catherine A. Blish</u>*, ¹, ⁸

¹Department of Medicine, Stanford University School of Medicine, Stanford, CA; ²Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA; ³Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA; ⁴Department of Pediatrics and Child Health, University of Nairobi, Nairobi, Kenya; ⁵Division of Global HIV & TB., Center for Global Health, U.S Centers for Disease Control and Prevention; ⁶Department of Epidemiology, University of Washington, Seattle, WA; ⁷Department of Global Health, University of Washington, Seattle, WA; 8Chan Zuckerberg Biohub, San Francisco, CA *Corresponding author

†Presenting author

5. IN VITRO AND ANIMAL MODEL STUDIES OF HIV PERSISTENCE

PP5.1 - 00178 Impact of Methamphetamine use disorder on CNS reservoirs and beyond in SIV-infected rhesusmacaques on antiretroviral therapy

B. Ling¹, W. Ortiz¹, *, A. Solis-Leal¹, N. Boby¹, G. De La Torre¹, K. Sayers¹, H. Nevill¹, B. Ling¹, *

¹Host pathogen interactions program Texas Biomedical Research Institute - San Antonio (United States)

PP5.2 - 00170 Plasma levels of Galectin-3 and -9 correlate with gut microbial dysregulation and residual mucosal SIV in Rhesus Macaques

S. T. Yeung¹, *, T. A. Premeaux¹, S.D. Johnson², S. N. Byrareddy², L. C. Ndhlovu¹

¹Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, USA; ²Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha,

NE, USA

31

PP5.3 - 00166 Treatment with AZD5582 + het-IL15 transiently disrupts the reservoir establishment in SIV-infected macaques

M. Statzu¹,*, C. Micali¹, T. R. Wiche Salinas¹, C. Gurley¹, B. Healy¹, D. G. Carnathan¹, B. K. Felber², G. N. Pavlakis², B. Keele², J. D. Lifson², G. M. Laird³, D. M. Margolis⁴, M. Paiardini¹, G. Silvestri¹

¹Emory University - Atlanta (United States); ²Frederick National Laboratory For Cancer Research - Frederick (United States); ³Accelevir Diagnostics - Baltimore (United States); ⁴University of North Carolina at Chapel Hill - Chapel Hill (United States)

PP5.4 - 00017

Barcoded HIV-1reveals proviruses associated with cell clonalproliferation or viremia have distinct chromatin patterns

T.-H. Zhang^{1,9}, Y. Shi^{2,9}, N. L. Komarova³, D. Wordaz⁴, M. Kostelny⁵, M. Dimapasoc⁵, A. Gonzales⁷, G. Bresson-Tan⁷, H. Chen⁵, C. Carmona⁵, C. Oh⁶, W. Harvey⁶, I. Abbaali⁶, C. Seet⁷, Y. Du⁸, R. Sun⁹, J. A. Zack⁵, ⁷, J<u>. T. Kim⁶</u> ¹Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; ²Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA; ³Department of Mathematics, University of California San Diego, La Jolla, CA, USA; ⁴Department of Ecology, Behavior and Evolution, University of California San Diego, La Jolla, CA, USA; ⁵Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA; ⁶Department of Medicine, Division of Infectious Diseases, University of California Los Angeles, Los Angeles, California, 90095, USA; ⁷Department of Medicine, Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, California, USA; ⁸Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; ⁹School of Medicine, Westlake University, Hangzhou, Zhejiang, China

PP5.5 – 00152 IL-15, Type I interferon, and amino acid pathways are correlated with SIV reservoir size and magnitude of viral rebound post-ATI in SIV-infected infant rhesus macaques

T. T. Chinunga¹, ², G. X. Medeiros¹, F. Bruno¹, K. M. Bricker², A. Chahroudi², ⁴, <u>S. P. Ribeiro</u>¹, ³, ⁴, *

¹Pathology Advanced Translational Research Unit (PATRU), Department of Pathology and Laboratory Medicine; ²Department of Pediatrics; ³Winship Cancer Institute; ⁴Emory Vaccine Center, Emory University School of Medicine, Atlanta, USA. Emory University, Atlanta GA, USA

PP5.6 – 00141 HIV-infected CD4+ T cells that survive NK cell interactions exhibit a TNF/IFN signature and have higher MHC-I expression

P. E. Grasberger¹, *, A. R. Sondrini¹, *, A. Kucukural¹, ², L. Leyre³, B. Jones³, K. L. Clayton¹

¹Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA; ²Department of Genomics and Computational Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA; ³Department of Medicine, Weill Cornell Medicine, New York, NY, USA

PP5.7 - 00047 Assessing the Impact of Macrophage-Tropism on Fitness of SHIV in vivo

M. Moezpoor¹,*, S. Houston¹, H. Krupp¹, G. Marshall¹, T. Cordeiro Alvarado¹, Jose Maria Martinez-Navio¹, M. Stevenson¹,²

¹University of Miami Leonard M.Miller School of Medicine - Miami (United States); ²Raymond F. Schinazi and Family Endowed Chair in Biomedicine, Professor of Medicine, Director, Institute of AIDS and Emerging Infectious Diseases, Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Life Science Technology Park, 1951 NW 7th Avenue, Room 2331B, Suite 200, Miami, FL 3312367, USA, mstevenson@med.miami.edu

PP5.8 – 00137 HIV-infected macrophages display lysosomal release upon targeting by NK cells

P. Grasberger¹,*, Kiera Clayton¹

¹University of Massachusetts Chan Medical School, Pathology Department, Worcester, MA

PP5.9 - 00108 Tracking infected cell fate using a barcoded virus

A. Oceguera Cabrera¹, *, S. Weissman², A. Ginda¹, U. O'doherty¹, *

¹Emory University - Atlanta (United States); ²Yale University - New Haven (United States)

PP5.10 – 00033 Ex vivo HIV DNA integration in STAT3 drives T cell persistence—A model of HIV-associated T cell lymphoma

M. Rist¹,*, M. Kaku¹, J. Coffin¹

¹Tufts University - Boston (United States)

PP5.11 – 00071 A novel in vitro model for studying HIV infection and latency in microglia: SIV Vpx-treated EcoHIV-infected CHME5

B. Ostermeier¹,*, S. Maggirwar¹

¹Microbiology, Immunology, and Tropical Medicine, George Washington University - Washington (United States)

6. CELL AND GENE THERAPIES

PP6.1 – 00116 Generation of HIV-resistant CD4-based CAR T cells for enhanced immunotherapy

R. Acosta¹,²,*, D. Bercow¹, F. Severi¹,³, M. Werts¹, D. Claiborne¹,²

¹The Wistar Institute of Anatomy and Biology - Philadelphia (United States), ²Department of Microbiology, Perelman School of Medicine, University of Pennsylvania - Philadelphia; ³University of Bologna - Bologna (Italy)

PP6.2 – 00140 Avoiding unwanted host immune responses toward AAV-delivered anti-HIV antibodies

<u>S.P. Fuchs</u>¹, A. Zhen¹, P. G. Mondragon¹, R. Zabizhin¹, K. Weisgrau³, J. Furlott³, J. Coonen³, E. Alexander³, J. Lifson⁴, E. Fray⁵, R. F. Siliciano⁵, G. Gao⁶, J. M. Martinez-Navio¹, R.C. Desrosiers¹

¹Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of Miami,

Miami, FL, USA; ²University of California - Los Angeles, Department of Hematology/Oncology, Los Angeles, CA, USA; ³Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA;

⁴AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD,

USA; ⁵Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, USA; ⁶Horae Gene Therapy Center, UMass Chan Medical School, University of Massachusetts, Worcester, MA, USA

PP6.3 - 00073 Blocking HIV-1 replication by disrupting TAR-Tat-Cyclin T1 interactions using double-strand break- (DSB-) free CRISPR editing

N. Salazar-Quiroz¹, *, Y. Sun¹, R. Behrens², H. Kim¹, L. Zhu¹, S.L.T. Boodapati¹, J. Bruce², N. Sherer², P. Kumar¹ Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine; ²McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA/Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA

PP6.4 - 00096 Therapeutic efficacy of AAV-delivered HIV-1 bNAbs to prevent SHIV rebound in Rhesus macaques

<u>P. Dhole</u>¹,*, M. Michael Kuipa¹, I. Isai Leguizamo¹, N. Natalie Correa¹, P. Peter Koroma¹, M. Mathew R Gardner²,³

¹Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA; ²Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA; ³Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, GA, USA

PP6.5 – 00086 Regulation of AAV transgene expression using nanoparticle- delivered Cre-recombinase N. Correa¹,*, M. R. Gardner¹,²

¹Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA; ²Division of Microbiology and Immunology, Emory National Primate Research Center, Atlanta, Georgia, USA

PP6.6 – 00076 Target cell-specific nanobody-engineered AAV vectors for in vivo gene therapy approaches for HIV cure

M.V. Hamann¹, H. Jahnz¹, Y. Sun², H. Kim², P. Kumar², <u>Ulrike C. Lange¹, ³, *</u>

¹Leibniz Institute of Virology, Hamburg, Germany; ²Yale University School of Medicine, New Haven, USA; ³Institute for Infection Research and Vaccine Development, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

PP6.7 – 00070 Blockade of HIV-1 Latency Reversal in CD4+ T Cells from ART- suppressed PLWH by the HIV-1 Antisense Transcript AST

<u>F. Romerio</u>¹, *, R. Li¹, K. Daneshvar², M. Pleet³, X. Xi¹, O. Padilla¹, G. Igbinosun¹, M.S. Iqbal¹, F. Kashanchi³, A. Mullen²

¹Johns Hopkins University - Baltimore, MD (United States); ²University of Massachusetts - Worcester, MA (United States); ³George Mason University - Manassas, VA (United States)

PP6.8 – 00062 Evaluating the Combination Effect of Autophagy Induction and CAR T Cell Therapy on "Kick-and-Kill" HIV Reservoir Depletion

N. S. Maggirwar¹, J. A. Morán¹, W. Mu³, A. Zhen³, M.D. Marsden¹, ²

¹Department of Microbiology and Molecular Genetics, School of Medicine, University of California Irvine; ²Department of Medicine, Division of Infectious Diseases, School of Medicine, University of California Irvine;

³Department of Hematology and Oncology, University of California Los Angeles

7. HUMAN STUDIES -

PP7.1-00174 Active HIV reservoir in jejunum exhibit distinct phenotypic features and evoke innate cell redistribution

M. Calvet-Mirabent¹, *, M. Yuan¹, X. Luo¹, J. Frouard¹, ², J. Neidleman¹, ², A. George¹, S. Tamaki³, A. Chaillon⁴, E. Hastie⁴, D. Smith⁴, C. Kieffer⁵, S. Gianella⁴, N.R. Roan¹, ²

¹Gladstone Institute of Virology, University of California San Francisco, San Francisco, CA, USA; ²Department of Urology, University of California San Francisco, San Francisco, CA, USA; ³Parnassus Flow Cytometry Core, University of California San Francisco, San Francisco, CA, USA; ⁴Department of Medicine, University of California San Diego, La Jolla, CA, USA; ⁵ Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA

PP7.2 – 00169 Longitudinal Persistence of HIV DNA in CSF Over 4 Years Despite Up to 20 Years of ART

J. Cyktor¹,*, E. Aga², A. Naqvi¹, D. Hoeth¹, R. Bosch², B. Macatangay¹, J.J. Eron³, S.L. Koletar⁴, C. Benson⁵, D. Mcmahon¹, J. Mellors¹, S. Spudich⁶, R. Gandhi⁷, for A5321 Team

¹University of Pittsburgh - Pittsburgh, United States; ²Harvard University - Boston, United States; ³University of North Carolina - Chapel Hill, United States; ⁴The Ohio State University - Columbus, United States; ⁵University of California - San Diego, United States; ⁶Yale University - New Haven, United States; ⁷Massachusetts General Hospital - Boston, United States

PP7.3 – 00149 Ultra-sensitive secondary structure RNA quantification in the HIV Reservoir Assay Validation and Evaluation Network (RAVEN) using the BioSnap assay

<u>J. Huie</u>¹,*, C. Zhou¹, J.A. Nichols¹, A.J. Greenberg², A. Wedrychowski³, C. Isbell³, S.A. Yukl³, M. Stone⁴, X. Deng⁴, S.K. Pillai⁴, M.P. Busch⁴

¹Jan Biotech, Inc. – Ithaca, United States; ²Bayesic Research, LIc - Ithaca, United States; ³UCSF and SFVAMC - San Francisco, United States; ⁴Vitalant Research Institute and Ucsf - San Francisco, United States

PP7.4 - 00075

Decoding HIV Suppression: Comprehensive Multi-Omics Analysis of Biomarkers and Gene Expression in Youth on Antiretroviral Therapy

<u>S.A. Borkar</u>1,*, L. Yin¹, J. Shen¹, K.F. Chang¹, U. Nepal¹, I.D. Raplee¹, G.M. Venturi², J.W. Sleasman², M.M. Goodenow¹

¹Molecular HIV and Host Interaction Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health - Bethesda, United States; ²Division of Allergy and Immunology, Department of Pediatrics Duke University School of Medicine - Durham, United States

PP7.5 - 00038 Correlates of HIV Persistence and Expression Differ by Sex

<u>C-Y. Lau</u>¹,*, T. Nguyen¹, M. Adnan¹, J. Earhart¹, D. Konlian¹, M. Zipparo¹, L. Adams¹, R. Dewar², J. Higgins³, C. Rehm⁴, D. Mcmahon⁵, R. Gorelick⁶, B. Luke⁶, F. Maldarelli¹

¹HIV Dynamics and Replication Program, National Cancer Institute, National Institutes of Health - Bethesda, United States; ²Virus Isolation and Serology Laboratory, National Cancer Institute, National Institutes of Health

- Bethesda, United States; ³AIDS Monitoring Laboratory, National Cancer Institute, National Institutes of Health
- Bethesda, United States; ⁴Laboratory of Immunoregulation, National Institute of Allergy and Infectious Disease, National Institutes of Health Bethesda, United States; ⁵Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Pittsburgh, United States; ⁶Frederick National Laboratory for Cancer Research, National Institutes of Health Bethesda, United States

PP7.6 – 00039 Elevated Lymph Node Metabolic Activity During Long-Term Effective Anti-Retroviral Therapy

<u>C-Y. Lau</u>¹,*, M. Khan¹, J. Earhart¹, G. Nair², E. Mena³, F. Maldarelli¹

¹Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health - Bethesda, United States; ²Quantitative MRI Core Facility, National Institute of Neurological Disease and Stroke, National Institutes of Health - Bethesda, United States; ³Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health - Bethesda, United States

PP7.7 – 00092 Single-Nucleus Multiomic Sequencing Uncovers Differential Chromatin Accessibility and Gene Regulation in Cerebrospinal Fluid Cells of PWH

<u>C. Lu</u>¹,*, B. Orlinick², B. Das², P. Filippidis², S. Mehta², S. Spudich², A. Pang³, Y. Kluger², M. Corley³, S. Farhadian²

¹Yale University - New Haven, United States; ²Yale School of Medicine - New Haven, United States; ³Weill Cornell Medicine - New York, United States

PP7.8 – 00085 Readiness for analytic treatment interruption trials among early treated children wellsuppressed on antiretroviral therapy – willingness to participate, HIV-1 DNA levels and Western Blot RESULTS: Oral

L. Kuhn¹, *, K. Reddy², P. Palma³, H. Peay⁴, K. Otwombe⁵,

on behalf of the Child and Adolescent Research Moving towards Alternative Interventions (CARMA)-GLOBAL Study Group.

¹Columbia University Irving Medical Center - New York, United States; ²African Health Research Institute — Durban, South Africa; ³Bambino Gesù Children's Hospital - Rome Italy; ⁴Rti - Research Triangle Park, United States; ⁵Perinatal Hiv Research Unit — Soweto, South Africa

PP7.9 – 00031 Memory B Cells in the CSF of People with HIV Exhibit Changes in Interferon Signaling and Antigen Presentation Capacity

P. Filippidis¹, M.J. Corley², S. Spudich³, M. Wang⁴, S. H. Kleinstein^{1,4,5}, S.F. Farhadian⁶

¹Department of Pathology, Yale School of Medicine, New Haven, CT, USA; ²Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, NY, USA; ³Department of Neurology, Yale School of Medicine, New Haven, CT, USA; ⁴Program in Computational, Biology and Biomedical Informatics, Yale University, New Haven, CT, USA; ⁵Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA; ⁶Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA

PP7.10 – 00018 The effects of P-glycoprotein, breast cancer resistance protein, and CYP3A4 modulators on the pharmacokinetic and pharmacodynamic responses of the TLR7 agonist vesatolimod in people living with HIV

<u>R. Omange</u>1,*, L. Zhang¹, M. Wire¹, Y. Zheng¹, S. Huang¹, R. Palaparthy¹, D. Sengupta¹, J. Wallin¹, C. De Vries¹, Y. Cai¹

¹Gilead Sciences Inc. - Foster City, United States

States)

8. ANTIBODY & IMMUNE BASED THERAPIES

PP8.1 – 00046 Safety, Viral Resuppression Dynamics, and Immunological Signatures of a PD-1 Inhibitor, Budigalimab, Among PWH During Analytical Treatment Interruption: Phase 1 Randomized Double- Blind Study

A. Pires Dos Santos¹, <u>K. Pringle¹</u>,*, P. Krishnan¹,*, A. Nugent¹, H. Sharthiya¹, P. Dorr¹, D. Cohen¹, M. Abunimeh¹, L. Lalezari², M. Ramgopal³, J. P. Routy⁴

¹Abbvie Inc. - North Chicago (United States); ²Quest Clinical Research - San Francisco (United States); ³Midway Immunology and Research Center - Fort Pierce (United States); ⁴Mcgill University Health Centre - Montreal Canada)

PP8.2 – 00162 Protective MHC-1 alleles extend time to SIV rebound following neutralizing antibody treatment at time of ART release

M. Medina¹,*, B. Varco-Merth¹, J. Coppola², H. King³, O. Fadeyi¹, S. Hoffmeister¹, W. Goodwin¹, D. Duell¹, B. Keele⁴, J. Lifson⁴, M. Roederer³, D. Burton³, L. Picker¹, A. Okoye¹,*

¹Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University - Beaverton (United States); ²Department of Immunology and Microbial Science, The Scripps Research Institute - La Jolla (United States); ³Vaccine Research Center, Niaid, Nih - Bethesda (United States); ⁴Aids and Cancer Virus Program, Biomedical Research, Inc., Frederick National Laboratory - Frederick (United

PP8.3 – 00167 Exploring Strategies to Enhance ADCC of HIV-infected cells by targeting the CD16 receptor

C. Melo¹, *, T. Murphy¹, C. Holmberg¹, E. Mcmahon¹, R. Lynch¹, A. Bosque¹

¹Department of Microbiology, Immunology & Tropical Medicine, Washington, DC, USA, The George Washington University, Washington, DC, USA

PP8.4 – 00154 Using Immunomodulatory Drug Pretreatment to Enhance AAV Delivery of Anti-HIV Broadly Neutralizing Monoclonal Antibodies

J. Termini¹,*, S. Fuchs¹, J.M. Martinez-Navio¹, E.G. Rakasz², P.G. Mondragon¹, R. Zabizhin¹, R.C. Desrosiers¹

¹Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, USA; ²Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA

PP8.5 - 00044 Mapping in-vivo escape pathways from VRC01-class bNAbs

T. Destefanis¹,*, E. Boritz², F. Belinky², S.H. Ko², E. Coates², G. Chenn², K. Bar³, P. Tebas³, R. Lynch⁴

¹Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine and Health

Sciences, George Washington University - Washington (United States); ²Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health - Bethesda (United States);

³Department of Medicine, Division of Infectious Disease, University of Pennsylvania - Philadelphia (United

States); ⁴Department of Microbiology & Immunology, George Washington University - Washington (United

PP8.6 – 00079 The asymmetric opening of HIV-1 Env by a potent indoline CD4 mimetic enables anti-Env coreceptor binding site antibodies to mediate ADCC

J. Richard¹,²,⁴,^{*}, A. Finzi¹,²,^{*}, G. Michael³,⁴, N. Ling⁴,⁴, D.S. Marco⁵,⁴, Z. Li⁶,⁴, T. William⁴, M. Lorie¹,², Z. Fei⁷, K. Hongil⁶, B. Sri Lakshmi Tejaswi⁶, S. Yaping⁶, B. Catherine¹, Y. Derek⁸, C. Ta Jung⁸, C. Hung-Ching⁸, B. Mehdi¹,², B.B. Guillaume¹,², G. Suneetha⁴, L. Wenwei³, D. Katrina¹,², B. Étienne¹,², C. Debashree¹, M. Halima¹, H. Wayne⁹,¹⁰, S. Joseph¹¹,¹², H. Rick¹³, M. Doreen⁷, S.A. Amos⁸, K. Priti⁶,^{*}, M. Walther³,^{*}, M. James⁵, P. Marzena⁴,^{*}

¹Centre de Recherche du CHUM, Montréal, Québec, Canada; ²Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada; ³Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA; ⁴Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; ⁵Department of Microbiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA; ⁶Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; ⁷Unit on Structural Biology, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA; ⁸Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; ⁹Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA; ¹⁰Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA; ¹¹Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; ¹²Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA; ¹³Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, USA; ¹⁴Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA

#Co-first

States)

PP8.7 – 00066 Characterization and Optimization of AAV Transgene Cassettes Expressing HIV-1 Broadly Neutralizing Antibody 10-1074

I. Leguizamo¹, P. Koroma¹, M. Gardner¹, ²

¹Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA; ²Division of Microbiology and Immunology, Emory National Primate Research Center, Atlanta, Georgia, USA

PP8.8 – 00060 Efficacy of HIV suppression by AAV-bNAb therapy is determined by antibody escapability N. Galvez¹,*, Y. Cao¹, A. Nitido¹, C. Deal¹, A. Balazs¹

¹Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA

PP8.9 – 00016 T Cell Receptor Repertoire Profiling in Phase 1b Study with PD-1 Inhibitor, Budigalimab, in PLWH Undergoing Analytical Treatment Interruption

P. Krishnan¹, *, R. Tripathi¹, Y. Hu¹, A. Vasanthakumar¹, J. Degner¹, S. Kadri¹, A. Pires Dos Santos¹, P. Dorr¹ Research & Development, AbbVie Inc., North Chicago, IL 60064, (United States)

GENERAL INFORMATION

LOGISTICAL ORGANIZATION, SCIENTIFIC SECRETARIAT & REGISTRATION

OVERCOME

13-15 RUE DES SABLONS 75116 PARIS - FRANCE

TEL: +33 (0)1 40 88 97 97 FAX: +33 (0)1 43 59 76 07 hivpersistence@overcome.fr

T: +1 954-463-4000

10.30AM

07:30PM

WORKSHOP INFORMATION

HILTON FORT LAUDERDALE MARINA

denied without an official badge.

1881 SE 17th Street, Fort Lauderdale, FL 33316, United States

The registration desk will be open during the hours listed below.

Badges must be worn at all times during the workshop and are non-transferable. Access to the workshop will be

• Tuesday December 10, 2024: 12:30PM - 07:30PM

- Wednesday December 11, 2024: 07:15AM 06:00PM
- Thursday December 12, 2024: 07:15AM 06:00PM
 Friday December 13, 2024: 07:30AM 13:00PM

All sessions will be held in English Certificates of attendance will be sent by email after the workshop

YOUR REGISTRATION INCLUDES THE FOLLOWING:

Welcome Dinner: The welcome dinner will take place in the Grand Ballroom on December 10, 2024 from 07:30PM

FOOD & BEVERAGES =

Welcome Coffees: Served in the Intracostal Foyer on December 11, 12 & 13 2024 between 06:00AM - 08:00AM

Morning Coffee Breaks: Served in the Intracostal Foyer on December 11, 12 & 13 2024 between 10:00AM

Lunches: Served in the Grand Ballroom on December 11 and 12, 2024 between 12:30PM - 02:00PM

Cheese & Wine Poster Sessions: Grand Ballroom Poster Area on December 11 & 12 2024 between 05:00PM

PARTNER ACKNOWLEDGEMENTS

	4612					
ACADEMIC						
SUPPORT						
UNIVERSITY OF MIAMI MILLER SCHOOL of MEDICINE	🎉 HEIDI	National Institute of Allergy and Infectious Diseases	NIH National Institute of Mental Health			
U						
	DIATI					
PLATINUM ————						
ViiV						
Healthcare						
GOLD —						
	🌠 GILEAD	MERCK				
MEDIA						
SUPPORT						
6 ImmunityBio						

E DECEMBER 10 - 13, 2024 HIV PERSISTENCE DURING THERAPY

Reservoirs & Eradication Strategies Workshop

